Object Detection Using Scalable Feature Maps in Remote Sensing Images

计算机科学 可扩展性 目标检测 特征(语言学) 计算机视觉 遥感 人工智能 特征提取 对象(语法) 模式识别(心理学) 地质学 数据库 语言学 哲学
作者
Yifan Chen,Jiayuan Zhuang,Haihong Fang
标识
DOI:10.1145/3639631.3639634
摘要

In recent years, as deep learning-based general object detection has undergone continuous advancement, remote sensing object detection has become a highly concerned computer vision task. Unlike ordinary images, remote sensing images are characterized by the prevalence of small objects and complex background. Therefore, directly applying general object detection frameworks to remote sensing images often fails to achieve satisfactory detection performance. In this paper, we introduce an object detector using scalable feature maps (SCFDet) for remote sensing object detection, which comprises two integral modules: the feature refusion enhancement module (FREM) and the feature resolution rebuilding module (FRBM). The FREM utilizes different feature fusion approaches to generate enhanced features tailored to the specific requirements of classification and localization tasks. The enhanced feature map fed into the classification branch (with a size reduced to one-sixteenth of the original) leverages the larger receptive field of higher-level features to obtain relevant contextual information, assisting in classification. Meanwhile, the enhanced feature map fed into the localization branch (with the same size as the original) fuses lower-level features to acquire more fine-grained details, assisting in regression. The FRBM enlarges the low-resolution feature map in the localization branch back to its original size before obtaining the final classification results. The experiments demonstrate that compared to other remote sensing object detectors, our proposed SFMDet exhibits excellent performance on the DOTA-v1.0 dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
成哥完成签到,获得积分10
刚刚
灵巧的坤发布了新的文献求助10
刚刚
刚刚
刚刚
刚刚
刚刚
OceanBlvdforme完成签到,获得积分10
1秒前
pigzhu发布了新的文献求助30
1秒前
梦梦完成签到,获得积分10
2秒前
2秒前
3秒前
魏煜佳发布了新的文献求助10
3秒前
4秒前
4秒前
潸潸发布了新的文献求助10
5秒前
脆弱的仙人掌完成签到,获得积分20
5秒前
成哥发布了新的文献求助10
5秒前
灵巧的坤完成签到,获得积分10
6秒前
王某人完成签到 ,获得积分10
6秒前
欢呼的明雪完成签到,获得积分10
7秒前
7秒前
嘉禾望岗发布了新的文献求助10
7秒前
大橙子完成签到,获得积分10
7秒前
东北信风完成签到 ,获得积分10
7秒前
今后应助祝顺遂采纳,获得10
7秒前
NADA完成签到,获得积分10
8秒前
长安完成签到,获得积分10
8秒前
AA完成签到,获得积分10
8秒前
NANA发布了新的文献求助10
8秒前
10秒前
10秒前
11秒前
13秒前
13秒前
14秒前
科研通AI5应助无悔呀采纳,获得10
14秒前
14秒前
littlewhite关注了科研通微信公众号
15秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759