Modeling Recurrent Failures on Large Directed Networks

泊松分布 自回归模型 边际分布 节点(物理) 推论 条件概率分布 计算机科学 泊松回归 数据挖掘 计量经济学 数学 统计 人工智能 随机变量 人口 工程类 社会学 人口学 结构工程
作者
Qingqing Zhai,Zhi‐Sheng Ye,Cheng Li,Matthew Revie,David B. Dunson
标识
DOI:10.1080/01621459.2024.2319897
摘要

Many lifeline infrastructure systems consist of thousands of components configured in a complex directed network. Disruption of the infrastructure constitutes a recurrent failure process over a directed network. Statistical inference for such network recurrence data is challenging because of the large number of nodes with irregular connections among them. Motivated by 16 years of Scottish Water operation records, we propose a network Gamma-Poisson Autoregressive NHPP (GPAN) model for recurrent failure data from large-scale directed physical networks. The model consists of two layers: the temporal layer applies a Non-Homogeneous Poisson Process (NHPP) with node-specific frailties, and the spatial layer uses a well-orchestrated gamma-Poisson autoregressive scheme to establish correlations among the frailties. Under the network-GPAN model, we develop a sum-product algorithm to compute the marginal distribution for each frailty conditional on the recurrence data. The marginal conditional frailty distributions are useful for predicting future failures based on historical data. In addition, the ability to rapidly compute these marginal distributions allows adoption of an EM type algorithm for estimation. Through a Bethe approximation, the output from the sum-product algorithm is used to compute maximum log-likelihood estimates. Applying the methods to the Scottish Water network, we demonstrate utility in aiding operation management and risk assessment of the water utility. Supplementary materials for this article are available online including a standardized description of the materials available for reproducing the work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到 ,获得积分10
刚刚
远方发布了新的文献求助10
刚刚
精明的小刺猬完成签到 ,获得积分10
刚刚
zz关闭了zz文献求助
刚刚
刚刚
wop111应助南宫雪采纳,获得20
刚刚
rr完成签到,获得积分10
1秒前
白鹭立雪完成签到,获得积分10
1秒前
PAUL发布了新的文献求助10
1秒前
慕青应助111采纳,获得10
1秒前
1秒前
CodeCraft应助111采纳,获得10
1秒前
xu1227应助111采纳,获得20
1秒前
2秒前
2秒前
lm完成签到,获得积分10
2秒前
小马甲应助无限尔云采纳,获得10
2秒前
没有名称完成签到,获得积分10
2秒前
2秒前
迷人小张发布了新的文献求助10
3秒前
3秒前
吴海娇发布了新的文献求助10
3秒前
LLII完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
xubee完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
7秒前
完美世界应助PAUL采纳,获得10
7秒前
ChenK发布了新的文献求助10
7秒前
老王发布了新的文献求助10
8秒前
张爽发布了新的文献求助30
9秒前
Ws完成签到,获得积分10
9秒前
小璐璐呀发布了新的文献求助10
9秒前
左右完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4905167
求助须知:如何正确求助?哪些是违规求助? 4183256
关于积分的说明 12989553
捐赠科研通 3949290
什么是DOI,文献DOI怎么找? 2165918
邀请新用户注册赠送积分活动 1184444
关于科研通互助平台的介绍 1090705