SCUNet++: Assessment of Pulmonary Embolism CT Image Segmentation Leveraging Swin-UNet and CNN Bottleneck Hybrid Architecture with Multi-Fusion Dense Skip Connection

人工智能 计算机科学 模式识别(心理学) 分割 肺栓塞 豪斯多夫距离 计算机辅助设计 编码器 计算机视觉 医学 心脏病学 工程制图 工程类 操作系统
作者
Yifei Chen,Bangli Zou,Zhaoxin Guo,Yudong Huang,Yifan Huang,Feiwei Qin,Q. Li,Changmiao Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.14705
摘要

Pulmonary embolism (PE) is a prevalent lung disease that can lead to right ventricular hypertrophy and failure in severe cases, ranking second in severity only to myocardial infarction and sudden death. Pulmonary artery CT angiography (CTPA) is a widely used diagnostic method for PE. However, PE detection presents challenges in clinical practice due to limitations in imaging technology. CTPA can produce noises similar to PE, making confirmation of its presence time-consuming and prone to overdiagnosis. Nevertheless, the traditional segmentation method of PE can not fully consider the hierarchical structure of features, local and global spatial features of PE CT images. In this paper, we propose an automatic PE segmentation method called SCUNet++ (Swin Conv UNet++). This method incorporates multiple fusion dense skip connections between the encoder and decoder, utilizing the Swin Transformer as the encoder. And fuses features of different scales in the decoder subnetwork to compensate for spatial information loss caused by the inevitable downsampling in Swin-UNet or other state-of-the-art methods, effectively solving the above problem. We provide a theoretical analysis of this method in detail and validate it on publicly available PE CT image datasets FUMPE and CAD-PE. The experimental results indicate that our proposed method achieved a Dice similarity coefficient (DSC) of 83.47% and a Hausdorff distance 95th percentile (HD95) of 3.83 on the FUMPE dataset, as well as a DSC of 83.42% and an HD95 of 5.10 on the CAD-PE dataset. These findings demonstrate that our method exhibits strong performance in PE segmentation tasks, potentially enhancing the accuracy of automatic segmentation of PE and providing a powerful diagnostic tool for clinical physicians. Our source code and new FUMPE dataset are available at https://github.com/JustlfC03/SCUNet-plusplus.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
倩倩完成签到,获得积分10
4秒前
4秒前
5秒前
zw发布了新的文献求助10
5秒前
爱我所爱完成签到,获得积分10
7秒前
倩倩发布了新的文献求助10
7秒前
研友_txj关注了科研通微信公众号
9秒前
吃猫的鱼发布了新的文献求助10
9秒前
10秒前
慕青应助zw采纳,获得10
12秒前
可爱的函函应助fly采纳,获得10
13秒前
DYN完成签到 ,获得积分10
15秒前
kawayifenm完成签到,获得积分10
16秒前
lubby发布了新的文献求助10
17秒前
研友_VZG7GZ应助Ula采纳,获得10
17秒前
小薛完成签到,获得积分10
19秒前
21秒前
Evooolet给Evooolet的求助进行了留言
22秒前
abc完成签到 ,获得积分10
23秒前
jacob258完成签到 ,获得积分0
23秒前
麦满分发布了新的文献求助10
24秒前
影子发布了新的文献求助10
26秒前
27秒前
fifteen应助panda采纳,获得10
27秒前
Abandon完成签到,获得积分20
27秒前
28秒前
29秒前
坚强的代曼完成签到,获得积分10
29秒前
小董继续努力完成签到,获得积分10
29秒前
seven完成签到,获得积分10
32秒前
吃猫的鱼发布了新的文献求助10
32秒前
shlw发布了新的文献求助10
32秒前
32秒前
32秒前
缪夜蕾发布了新的文献求助10
33秒前
33秒前
alpaca5完成签到,获得积分10
35秒前
35秒前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219342
求助须知:如何正确求助?哪些是违规求助? 2868226
关于积分的说明 8159905
捐赠科研通 2535266
什么是DOI,文献DOI怎么找? 1367669
科研通“疑难数据库(出版商)”最低求助积分说明 645090
邀请新用户注册赠送积分活动 618332