Fault Diagnosis of Gear Based on Multichannel Feature Fusion and DropKey-Vision Transformer

人工智能 计算机科学 模式识别(心理学) 频道(广播) 断层(地质) 特征提取 特征(语言学) 变压器 可视化 计算机视觉 工程类 电压 计算机网络 语言学 哲学 地震学 电气工程 地质学
作者
Na Yang,Jie Liu,Weiqiang Zhao,Yutao Tan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4758-4770 被引量:4
标识
DOI:10.1109/jsen.2023.3344999
摘要

To solve the problem that it is single-channel vibration signals not being able to fully express fault feature information and diagnostic networks not being able to fully capture its information resulting in low diagnostic accuracy, a new gear fault diagnosis method is proposed. First, subtraction average-based optimizer (SABO) as an optimization algorithm is introduced to optimize the parameters of variational mode decomposition (VMD) quickly and with high quality to conduct signal preprocessing. Next, the noisy signals in each channel can be quickly and effectively processed to obtain clean 1-D and prominent vibration characteristics signals from multichannel. Then, multichannel information is fused to obtain image datasets for diagnosis based on symmetric dot pattern (SDP) to realize clear signals transformed into images. A diagnostic model is proposed based on DropKey added for vision transformer (DVit) to enhance the diagnostic network's ability to comprehensively capture multichannel feature information. Finally, the proposed method is validated through three datasets from gear fault diagnosis experiments with the average accuracy in fault diagnosis reaching more than 99.5% whether it is the degree or type of fault diagnosis. The average accuracy has increased by at least 0.5% compared with before improvement, and it has increased about 2%–7% compared with other methods. The results with visualization form verify the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小熊完成签到,获得积分10
刚刚
1秒前
仙笛童神完成签到 ,获得积分10
1秒前
1秒前
桃桃奶盖完成签到,获得积分10
1秒前
yy完成签到,获得积分10
1秒前
刻苦棒球发布了新的文献求助10
1秒前
Te完成签到 ,获得积分20
1秒前
欢呼的皮皮虾完成签到 ,获得积分10
2秒前
谦让谷菱发布了新的文献求助10
2秒前
单纯沛凝发布了新的文献求助30
2秒前
2秒前
dingding发布了新的文献求助10
2秒前
MelonWong发布了新的文献求助10
2秒前
Hello应助Young采纳,获得10
2秒前
3秒前
bunny完成签到,获得积分10
3秒前
12233发布了新的文献求助10
3秒前
3秒前
3秒前
郭晓丽发布了新的文献求助10
4秒前
5秒前
研友_8RyzBZ发布了新的文献求助10
5秒前
5秒前
Stella应助Liens采纳,获得10
6秒前
6秒前
赘婿应助时尚的雨筠采纳,获得10
6秒前
arizaki7发布了新的文献求助10
6秒前
will发布了新的文献求助10
6秒前
Ricky发布了新的文献求助10
7秒前
7秒前
陈0702_完成签到,获得积分20
7秒前
ZIS发布了新的文献求助10
7秒前
果粒橙发布了新的文献求助10
7秒前
lee发布了新的文献求助10
8秒前
buno应助无悔初心采纳,获得10
9秒前
227发布了新的文献求助10
11秒前
金金发布了新的文献求助10
11秒前
bkagyin应助香香的臭宝采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836