Fault Diagnosis of Gear Based on Multichannel Feature Fusion and DropKey-Vision Transformer

人工智能 计算机科学 模式识别(心理学) 频道(广播) 断层(地质) 特征提取 特征(语言学) 变压器 可视化 计算机视觉 工程类 电压 计算机网络 语言学 哲学 地震学 电气工程 地质学
作者
Na Yang,Jie Liu,Weiqiang Zhao,Yutao Tan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4758-4770 被引量:4
标识
DOI:10.1109/jsen.2023.3344999
摘要

To solve the problem that it is single-channel vibration signals not being able to fully express fault feature information and diagnostic networks not being able to fully capture its information resulting in low diagnostic accuracy, a new gear fault diagnosis method is proposed. First, subtraction average-based optimizer (SABO) as an optimization algorithm is introduced to optimize the parameters of variational mode decomposition (VMD) quickly and with high quality to conduct signal preprocessing. Next, the noisy signals in each channel can be quickly and effectively processed to obtain clean 1-D and prominent vibration characteristics signals from multichannel. Then, multichannel information is fused to obtain image datasets for diagnosis based on symmetric dot pattern (SDP) to realize clear signals transformed into images. A diagnostic model is proposed based on DropKey added for vision transformer (DVit) to enhance the diagnostic network's ability to comprehensively capture multichannel feature information. Finally, the proposed method is validated through three datasets from gear fault diagnosis experiments with the average accuracy in fault diagnosis reaching more than 99.5% whether it is the degree or type of fault diagnosis. The average accuracy has increased by at least 0.5% compared with before improvement, and it has increased about 2%–7% compared with other methods. The results with visualization form verify the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
椰树椰汁完成签到,获得积分10
刚刚
Orange应助杨潇丶丶采纳,获得10
刚刚
桐桐应助莫羽倾尘采纳,获得10
刚刚
1秒前
1秒前
1秒前
CoNor发布了新的文献求助10
2秒前
小巧醉冬发布了新的文献求助10
2秒前
2秒前
研友_85YNe8发布了新的文献求助10
2秒前
超越俗尘发布了新的文献求助10
3秒前
3秒前
惊鸿一面完成签到,获得积分10
3秒前
简默发布了新的文献求助10
3秒前
科研通AI2S应助务实寒天采纳,获得10
3秒前
HY完成签到,获得积分10
3秒前
4秒前
jisean完成签到,获得积分10
4秒前
innocence完成签到,获得积分10
4秒前
LCct完成签到,获得积分20
5秒前
li发布了新的文献求助10
5秒前
dhgg完成签到,获得积分10
5秒前
单薄雅阳发布了新的文献求助10
5秒前
香蕉诗蕊举报睿睿求助涉嫌违规
6秒前
6秒前
小小Li完成签到,获得积分10
6秒前
gaterina发布了新的文献求助10
6秒前
星黛Lu完成签到,获得积分10
6秒前
6秒前
我是老大应助王开阔采纳,获得20
7秒前
脑洞疼应助crytek采纳,获得10
7秒前
Mobitz发布了新的文献求助20
7秒前
wxxz发布了新的文献求助10
7秒前
LCct发布了新的文献求助10
7秒前
7秒前
SciGPT应助楼下太吵了采纳,获得10
8秒前
8秒前
FashionBoy应助啊啊啊啊采纳,获得10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034