Fault Diagnosis of Gear Based on Multichannel Feature Fusion and DropKey-Vision Transformer

人工智能 计算机科学 模式识别(心理学) 频道(广播) 断层(地质) 特征提取 特征(语言学) 变压器 可视化 计算机视觉 工程类 电压 计算机网络 语言学 哲学 地震学 电气工程 地质学
作者
Na Yang,Jie Liu,Weiqiang Zhao,Yutao Tan
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4758-4770 被引量:4
标识
DOI:10.1109/jsen.2023.3344999
摘要

To solve the problem that it is single-channel vibration signals not being able to fully express fault feature information and diagnostic networks not being able to fully capture its information resulting in low diagnostic accuracy, a new gear fault diagnosis method is proposed. First, subtraction average-based optimizer (SABO) as an optimization algorithm is introduced to optimize the parameters of variational mode decomposition (VMD) quickly and with high quality to conduct signal preprocessing. Next, the noisy signals in each channel can be quickly and effectively processed to obtain clean 1-D and prominent vibration characteristics signals from multichannel. Then, multichannel information is fused to obtain image datasets for diagnosis based on symmetric dot pattern (SDP) to realize clear signals transformed into images. A diagnostic model is proposed based on DropKey added for vision transformer (DVit) to enhance the diagnostic network's ability to comprehensively capture multichannel feature information. Finally, the proposed method is validated through three datasets from gear fault diagnosis experiments with the average accuracy in fault diagnosis reaching more than 99.5% whether it is the degree or type of fault diagnosis. The average accuracy has increased by at least 0.5% compared with before improvement, and it has increased about 2%–7% compared with other methods. The results with visualization form verify the effectiveness and superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助茶米采纳,获得10
2秒前
sleep举报刘小文求助涉嫌违规
6秒前
Hello应助隐形的凡阳采纳,获得10
7秒前
楠楠完成签到 ,获得积分10
7秒前
淡定星星完成签到,获得积分10
8秒前
小陈要发SCI完成签到 ,获得积分10
12秒前
LuckyM发布了新的文献求助10
13秒前
13秒前
lige完成签到 ,获得积分10
14秒前
15秒前
Ting完成签到 ,获得积分10
15秒前
保卫时光完成签到,获得积分10
16秒前
Roger发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
wjsAljl完成签到,获得积分10
19秒前
满意的含灵完成签到,获得积分10
21秒前
茶米发布了新的文献求助10
23秒前
夏天的风发布了新的文献求助10
23秒前
小二郎应助超帅的天曼采纳,获得10
24秒前
www完成签到 ,获得积分10
28秒前
31秒前
Biohacking完成签到,获得积分10
32秒前
高高发布了新的文献求助10
34秒前
耶斯发布了新的文献求助10
34秒前
科研蝗虫发布了新的文献求助10
35秒前
37秒前
困困包发布了新的文献求助10
38秒前
华仔应助eno1009采纳,获得20
38秒前
Lucas应助jgpiao采纳,获得10
39秒前
39秒前
40秒前
完美世界应助夏天的风采纳,获得10
40秒前
深情安青应助开朗的访彤采纳,获得10
40秒前
41秒前
41秒前
Celia完成签到,获得积分10
43秒前
碧蓝翅膀完成签到,获得积分20
44秒前
121发布了新的文献求助10
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454