已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Local dynamic neural network for quantitative analysis of mixed gases

人工神经网络 近似误差 自编码 生物系统 工作(物理) 置信区间 定量分析(化学) 分析化学(期刊) 样品(材料) 相对标准差 材料科学 计算机科学 模式识别(心理学) 统计 数学 人工智能 检出限 化学 物理 色谱法 热力学 生物
作者
Juan Li,Ma Yi-Lun,Zaihua Duan,Yajie Zhang,Xiaohui Duan,Bohao Liu,Zhen Yuan,Yuanming Wu,Yadong Jiang,Huiling Tai
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:404: 135230-135230 被引量:21
标识
DOI:10.1016/j.snb.2023.135230
摘要

The Gas sensor array is commonly used in combination with quantitative analysis method for detecting mixed gases. Artificial neural network (ANN) is usually employed to achieve a quantitative analysis of the mixed gases. However, the current ANN models typically require a large number of test samples to obtain low relative errors. In this work, we fabricated a gas sensor array composed of four gas sensors (i.e., In2O3: NO2, Pd-ZnO: NH3, Au-SnO2: CH4, Pd-LaFeO3: CO2) and proposed a local dynamic neural network (LDNN) model for quantitative analysis of four mixed gases. By constructing and extracting features through a pre-trained autoencoder network, only a small sample size (25 local points) is input into the LDNN for training to realize the concentration prediction of four gases. The results show that the MAEs (mean absolute error) of the predicted concentrations of NO2, NH3, CH4, and CO2 are 0.01 ppm, 0.04 ppm, 0.13 ppm, and 42.67 ppm, while the MREs (mean relative error) are 0.19%, 0.85%, 1.17%, and 1.06%, respectively. Moreover, the MREs of the predicted concentrations for four gases are less than 2% within the 95% confidence interval. This work provides an effective quantitative analysis method with small sample size, simple structure and high-precision for the detection of four mixed gases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pluto应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得20
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
小星完成签到 ,获得积分10
4秒前
执着的采枫完成签到 ,获得积分10
5秒前
李爱国应助Echo采纳,获得10
5秒前
5秒前
科研通AI6应助Zhou采纳,获得10
8秒前
8秒前
葡萄味的果茶完成签到 ,获得积分10
10秒前
虚幻笑晴发布了新的文献求助10
11秒前
赵小胖完成签到,获得积分10
11秒前
price发布了新的文献求助10
12秒前
共享精神应助赵小胖采纳,获得10
14秒前
14秒前
97_完成签到,获得积分10
16秒前
苹果以云完成签到,获得积分10
17秒前
Winter完成签到 ,获得积分10
18秒前
Enma完成签到,获得积分10
20秒前
王海强完成签到,获得积分10
23秒前
23秒前
姜忆霜完成签到 ,获得积分10
25秒前
懵懂的凝丹完成签到 ,获得积分10
27秒前
28秒前
YH完成签到,获得积分20
30秒前
研友_LaOyQZ完成签到,获得积分10
33秒前
34秒前
OKC完成签到,获得积分10
34秒前
34秒前
CK完成签到 ,获得积分10
35秒前
科研通AI6应助Jodie采纳,获得10
36秒前
jimskylxk完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458721
求助须知:如何正确求助?哪些是违规求助? 4564710
关于积分的说明 14296681
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424511