A digital twin-driven approach for partial domain fault diagnosis of rotating machinery

计算机科学 学习迁移 人工智能 断层(地质) 杠杆(统计) 机器学习 地震学 地质学
作者
Jingyan Xia,Zhuyun Chen,Jiaxian Chen,Guolin He,Ruyi Huang,Weihua Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:131: 107848-107848 被引量:49
标识
DOI:10.1016/j.engappai.2024.107848
摘要

Artificial intelligence (AI)-driven fault diagnosis methods are crucial for ensuring rotating machinery's safety and effective operation. The success of most current methods relies on the assumption that sufficient high-quality labeled datasets can be obtained for model training. However, in real-world industrial scenarios, obtaining such datasets is difficult or nearly impossible, thereby hindering the practical implementation of these methods. The integration of virtual modeling and transfer learning offers a powerful approach to meet the above challenge. Abundant virtual data of different fault categories can be acquired in the virtual space with highly flexible and at a low cost, and transfer learning can enhance the practical utility of these virtual data for contributing to the construction of diagnosis models. Therefore, this paper proposes a digital twin-driven partial domain fault diagnosis method based on unlabeled physical data and labeled virtual data. First, a virtual model of rotating machinery is built to generate labeled virtual fault data with enough fault types. Then, an adversarial transfer learning network is developed to leverage the effective knowledge from the virtual and physical data. Meanwhile, a weighting learning module is introduced to reduce the negative effect caused by the redundant fault categories in the virtual space. Finally, the proposed digital twin-driven transfer learning network is trained with the labeled virtual data and unlabeled physical data. Experiments on a light truck transmission system demonstrate that the proposed method achieves satisfactory diagnostic performance even without labeled physical fault data, contributing to the advancement of AI engineering applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助傻大采纳,获得10
1秒前
成航朱发布了新的文献求助10
1秒前
zz发布了新的文献求助10
2秒前
2秒前
3秒前
在水一方应助洁净的画板采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
执着俊驰发布了新的文献求助10
4秒前
5秒前
雪山飞龙发布了新的文献求助10
5秒前
5秒前
Mira发布了新的文献求助10
5秒前
岁锦完成签到,获得积分10
6秒前
6秒前
福尔摩环发布了新的文献求助10
7秒前
7秒前
李哈哈完成签到,获得积分10
7秒前
哦呵发布了新的文献求助10
7秒前
漂亮忆南发布了新的文献求助10
8秒前
在水一方应助zz采纳,获得10
9秒前
9秒前
Lynn完成签到,获得积分10
9秒前
10秒前
充电宝应助xiuwu采纳,获得10
10秒前
chengxu发布了新的文献求助10
11秒前
光亮的元槐完成签到,获得积分10
11秒前
猪伱平安发布了新的文献求助10
12秒前
qazw124发布了新的文献求助10
12秒前
田様应助健忘浩宇采纳,获得10
12秒前
XU徐发布了新的文献求助10
12秒前
Ahiterin完成签到,获得积分10
12秒前
13秒前
立na完成签到,获得积分10
13秒前
14秒前
14秒前
潇洒的书文完成签到,获得积分10
14秒前
xuehuali完成签到,获得积分10
14秒前
Dongxz666完成签到,获得积分10
14秒前
绿绿关注了科研通微信公众号
14秒前
科研小白完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415580
求助须知:如何正确求助?哪些是违规求助? 4532207
关于积分的说明 14132627
捐赠科研通 4447816
什么是DOI,文献DOI怎么找? 2439934
邀请新用户注册赠送积分活动 1431907
关于科研通互助平台的介绍 1409459