Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors

计算机科学 人工智能 交叉口(航空) 探测器 概率逻辑 培训(气象学) 计算机视觉 目标检测 对象(语法) 模式识别(心理学) 电信 运输工程 地理 工程类 气象学
作者
Jeffri Murrugarra-Llerena,Lucas N. Kirsten,Luis Felipe Zeni,Cláudio R. Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 671-681 被引量:12
标识
DOI:10.1109/tip.2023.3348697
摘要

Oriented object detection is a challenging and relatively new problem. Most existing approaches are based on deep learning and explore Oriented Bounding Boxes (OBBs) to represent the objects. They are typically based on adaptations of traditional detectors that work with Horizontal Bounding Boxes (HBBs), which have been exploring IoU-like loss functions to regress the HBBs. However, extending this idea for OBBs is challenging due to complex formulations or requirement for customized backpropagation implementations. Furthermore, using OBBs presents limitations for irregular or roughly circular objects, since the definition of the ideal OBB is an ambiguous and ill-posed problem. In this work, we jointly tackle the problem of training, representing, and evaluating oriented detectors. We explore Gaussian distributions–called Gaussian Bounding Boxes (GBBs)–as fuzzy representations for oriented objects and propose using a similarity metric between two GBBs based on the Hellinger distance. We show that this metric leads to a differentiable closed-form expression that can be directly used as a localization loss term to train OBB object detectors. We also show that GBBs present a natural representation as elliptical regions (called EBBs), which inherently mitigate ambiguity representation for circular objects. Finally, we empirically show that the proposed similarity metric computed between two GBBs strongly correlates with the IoU between the corresponding EBBs, motivating the name Probabilistic Intersection-over-Union (ProbIoU). Our experiments show that results using ProbIoU as a regression loss are competitive with state-of-the-art alternatives without requiring additional hyperparameters or customized implementations, and that ProbIoU is a promising alternative to evaluate oriented object detectors. Our code is available at https://github.com/ProbIOU/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
murmure发布了新的文献求助10
1秒前
1秒前
Ftucyctucutct完成签到,获得积分10
1秒前
Lucas应助金阿林在科研采纳,获得10
1秒前
1秒前
2秒前
3秒前
无期发布了新的文献求助10
3秒前
科研通AI6应助热爱采纳,获得10
3秒前
彭于彦祖应助苗儿采纳,获得30
3秒前
李健的小迷弟应助afterly采纳,获得10
4秒前
4秒前
4秒前
5秒前
张子烜完成签到,获得积分10
5秒前
JamesPei应助云深不知处采纳,获得10
5秒前
浮游应助康K采纳,获得10
5秒前
freya发布了新的文献求助30
6秒前
臭小子发布了新的文献求助10
6秒前
打打应助我爱学习采纳,获得10
6秒前
6秒前
7秒前
FashionBoy应助excellent采纳,获得10
7秒前
lxm完成签到,获得积分20
7秒前
ACE发布了新的文献求助10
7秒前
8秒前
LIUDEHUA发布了新的文献求助10
8秒前
希望天下0贩的0应助zuolan采纳,获得10
8秒前
保奔发布了新的文献求助30
9秒前
9秒前
9秒前
Hibiscus95完成签到,获得积分10
9秒前
9秒前
CodeCraft应助instant采纳,获得10
9秒前
Mayday完成签到,获得积分10
10秒前
10秒前
科研通AI6应助hbhbj采纳,获得10
10秒前
葫芦娃发布了新的社区帖子
11秒前
11秒前
臭小子完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435065
求助须知:如何正确求助?哪些是违规求助? 4547267
关于积分的说明 14207311
捐赠科研通 4467347
什么是DOI,文献DOI怎么找? 2448520
邀请新用户注册赠送积分活动 1439497
关于科研通互助平台的介绍 1416178