已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors

计算机科学 人工智能 交叉口(航空) 探测器 概率逻辑 培训(气象学) 计算机视觉 目标检测 对象(语法) 模式识别(心理学) 电信 运输工程 地理 工程类 气象学
作者
Jeffri Murrugarra-Llerena,Lucas N. Kirsten,Luis Felipe Zeni,Cláudio R. Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 671-681 被引量:12
标识
DOI:10.1109/tip.2023.3348697
摘要

Oriented object detection is a challenging and relatively new problem. Most existing approaches are based on deep learning and explore Oriented Bounding Boxes (OBBs) to represent the objects. They are typically based on adaptations of traditional detectors that work with Horizontal Bounding Boxes (HBBs), which have been exploring IoU-like loss functions to regress the HBBs. However, extending this idea for OBBs is challenging due to complex formulations or requirement for customized backpropagation implementations. Furthermore, using OBBs presents limitations for irregular or roughly circular objects, since the definition of the ideal OBB is an ambiguous and ill-posed problem. In this work, we jointly tackle the problem of training, representing, and evaluating oriented detectors. We explore Gaussian distributions–called Gaussian Bounding Boxes (GBBs)–as fuzzy representations for oriented objects and propose using a similarity metric between two GBBs based on the Hellinger distance. We show that this metric leads to a differentiable closed-form expression that can be directly used as a localization loss term to train OBB object detectors. We also show that GBBs present a natural representation as elliptical regions (called EBBs), which inherently mitigate ambiguity representation for circular objects. Finally, we empirically show that the proposed similarity metric computed between two GBBs strongly correlates with the IoU between the corresponding EBBs, motivating the name Probabilistic Intersection-over-Union (ProbIoU). Our experiments show that results using ProbIoU as a regression loss are competitive with state-of-the-art alternatives without requiring additional hyperparameters or customized implementations, and that ProbIoU is a promising alternative to evaluate oriented object detectors. Our code is available at https://github.com/ProbIOU/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇娇完成签到 ,获得积分10
2秒前
3秒前
不羁完成签到 ,获得积分10
4秒前
夏爽2023发布了新的文献求助50
4秒前
优雅靖柏发布了新的文献求助10
7秒前
7秒前
re发布了新的文献求助20
10秒前
10秒前
aiine发布了新的文献求助30
12秒前
唐小刚完成签到,获得积分10
12秒前
左耳东发布了新的文献求助30
13秒前
徐猫猫完成签到,获得积分20
15秒前
yyc发布了新的文献求助10
15秒前
16秒前
17秒前
18秒前
18秒前
19秒前
徐猫猫发布了新的文献求助10
20秒前
YOGA1115完成签到,获得积分10
20秒前
yangyajie发布了新的文献求助10
20秒前
21秒前
zjky6r发布了新的文献求助10
21秒前
大方海燕发布了新的文献求助10
21秒前
田様应助FUNG采纳,获得10
22秒前
斯文败类应助kevin1018采纳,获得10
22秒前
23秒前
re完成签到,获得积分10
24秒前
YOGA1115发布了新的文献求助10
24秒前
Bdcy完成签到 ,获得积分10
24秒前
25秒前
沐梓完成签到,获得积分10
25秒前
Ali990323完成签到,获得积分10
26秒前
yoo完成签到,获得积分10
26秒前
彭仲康完成签到 ,获得积分10
26秒前
26秒前
AAA发布了新的文献求助10
27秒前
28秒前
harmon发布了新的文献求助10
29秒前
思源应助大方海燕采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252840
求助须知:如何正确求助?哪些是违规求助? 4416384
关于积分的说明 13749582
捐赠科研通 4288491
什么是DOI,文献DOI怎么找? 2352947
邀请新用户注册赠送积分活动 1349756
关于科研通互助平台的介绍 1309339