Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors

计算机科学 人工智能 交叉口(航空) 探测器 概率逻辑 培训(气象学) 计算机视觉 目标检测 对象(语法) 模式识别(心理学) 电信 运输工程 地理 工程类 气象学
作者
Jeffri Murrugarra-Llerena,Lucas N. Kirsten,Luis Felipe Zeni,Cláudio Rosito Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 671-681
标识
DOI:10.1109/tip.2023.3348697
摘要

Oriented object detection is a challenging and relatively new problem. Most existing approaches are based on deep learning and explore Oriented Bounding Boxes (OBBs) to represent the objects. They are typically based on adaptations of traditional detectors that work with Horizontal Bounding Boxes (HBBs), which have been exploring IoU-like loss functions to regress the HBBs. However, extending this idea for OBBs is challenging due to complex formulations or requirement for customized backpropagation implementations. Furthermore, using OBBs presents limitations for irregular or roughly circular objects, since the definition of the ideal OBB is an ambiguous and ill-posed problem. In this work, we jointly tackle the problem of training, representing, and evaluating oriented detectors. We explore Gaussian distributions-called Gaussian Bounding Boxes (GBBs)-as fuzzy representations for oriented objects and propose using a similarity metric between two GBBs based on the Hellinger distance. We show that this metric leads to a differentiable closed-form expression that can be directly used as a localization loss term to train OBB object detectors. We also show that GBBs present a natural representation as elliptical regions (called EBBs), which inherently mitigate ambiguity representation for circular objects. Finally, we empirically show that the proposed similarity metric computed between two GBBs strongly correlates with the IoU between the corresponding EBBs, motivating the name Probabilistic Intersection-over-Union (ProbIoU). Our experiments show that results using ProbIoU as a regression loss are competitive with state-of-the-art alternatives without requiring additional hyperparameters or customized implementations, and that ProbIoU is a promising alternative to evaluate oriented object detectors. Our code is available at https://github.com/ProbIOU/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助haoaaa采纳,获得30
刚刚
共享精神应助无情山水采纳,获得10
刚刚
濮阳千易完成签到,获得积分10
2秒前
完美世界应助JERRI采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
DY完成签到,获得积分20
4秒前
llllll完成签到 ,获得积分10
5秒前
略略略发布了新的文献求助10
5秒前
科研通AI2S应助白告采纳,获得10
6秒前
6秒前
DY发布了新的文献求助10
7秒前
yyymmma发布了新的文献求助10
8秒前
典雅涵瑶完成签到,获得积分10
8秒前
Jenaloe发布了新的文献求助10
8秒前
刘小孩发布了新的文献求助10
8秒前
9秒前
肚子圆圆的完成签到 ,获得积分10
10秒前
yangzhang完成签到,获得积分10
10秒前
Ava应助winnerbing采纳,获得10
12秒前
13秒前
nsk完成签到,获得积分10
13秒前
Hello应助顺利毕业采纳,获得10
14秒前
科研通AI2S应助111采纳,获得10
14秒前
jby发布了新的文献求助10
14秒前
老衲法号嘿嘿嘿完成签到,获得积分10
14秒前
15秒前
天天快乐应助小罗黑的采纳,获得10
15秒前
15秒前
15秒前
16秒前
李健应助dreamon采纳,获得10
16秒前
Jenaloe完成签到,获得积分10
16秒前
尹俊采完成签到,获得积分10
16秒前
记不住发布了新的文献求助10
17秒前
秋秋发布了新的文献求助10
17秒前
jiao完成签到,获得积分10
17秒前
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
The SAGE Handbook of Qualitative Research 800
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786078
关于积分的说明 7774957
捐赠科研通 2441899
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825