清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors

计算机科学 人工智能 交叉口(航空) 探测器 概率逻辑 培训(气象学) 计算机视觉 目标检测 对象(语法) 模式识别(心理学) 电信 运输工程 地理 工程类 气象学
作者
Jeffri Murrugarra-Llerena,Lucas N. Kirsten,Luis Felipe Zeni,Cláudio R. Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 671-681 被引量:12
标识
DOI:10.1109/tip.2023.3348697
摘要

Oriented object detection is a challenging and relatively new problem. Most existing approaches are based on deep learning and explore Oriented Bounding Boxes (OBBs) to represent the objects. They are typically based on adaptations of traditional detectors that work with Horizontal Bounding Boxes (HBBs), which have been exploring IoU-like loss functions to regress the HBBs. However, extending this idea for OBBs is challenging due to complex formulations or requirement for customized backpropagation implementations. Furthermore, using OBBs presents limitations for irregular or roughly circular objects, since the definition of the ideal OBB is an ambiguous and ill-posed problem. In this work, we jointly tackle the problem of training, representing, and evaluating oriented detectors. We explore Gaussian distributions–called Gaussian Bounding Boxes (GBBs)–as fuzzy representations for oriented objects and propose using a similarity metric between two GBBs based on the Hellinger distance. We show that this metric leads to a differentiable closed-form expression that can be directly used as a localization loss term to train OBB object detectors. We also show that GBBs present a natural representation as elliptical regions (called EBBs), which inherently mitigate ambiguity representation for circular objects. Finally, we empirically show that the proposed similarity metric computed between two GBBs strongly correlates with the IoU between the corresponding EBBs, motivating the name Probabilistic Intersection-over-Union (ProbIoU). Our experiments show that results using ProbIoU as a regression loss are competitive with state-of-the-art alternatives without requiring additional hyperparameters or customized implementations, and that ProbIoU is a promising alternative to evaluate oriented object detectors. Our code is available at https://github.com/ProbIOU/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binyao2024完成签到,获得积分10
刚刚
NexusExplorer应助王磊采纳,获得10
20秒前
惜筠完成签到,获得积分10
24秒前
韩寒完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
资山雁完成签到 ,获得积分10
29秒前
采薇完成签到,获得积分10
49秒前
现实的曼安完成签到 ,获得积分10
54秒前
跳跃的鹏飞完成签到 ,获得积分10
56秒前
包容的忆灵完成签到 ,获得积分10
1分钟前
1分钟前
HuiHui完成签到,获得积分10
1分钟前
lrcty98完成签到 ,获得积分10
1分钟前
天将明完成签到 ,获得积分10
2分钟前
甜甜的流沙完成签到 ,获得积分10
2分钟前
unicornmed完成签到,获得积分10
2分钟前
凸迩丝儿完成签到 ,获得积分10
2分钟前
2分钟前
沝弲完成签到 ,获得积分10
2分钟前
卖包的小行家完成签到 ,获得积分10
2分钟前
unicornmed发布了新的文献求助10
2分钟前
1111完成签到 ,获得积分10
2分钟前
任性翠安完成签到 ,获得积分10
2分钟前
嘻嘻哈哈完成签到 ,获得积分10
2分钟前
zhaoqing完成签到,获得积分10
2分钟前
nano完成签到 ,获得积分10
2分钟前
科研通AI5应助shor0414采纳,获得30
2分钟前
Akim应助张凯采纳,获得10
2分钟前
JamesPei应助shor0414采纳,获得10
2分钟前
2分钟前
叶远望完成签到 ,获得积分10
2分钟前
某某某发布了新的文献求助10
2分钟前
2分钟前
2分钟前
张凯发布了新的文献求助10
2分钟前
万能图书馆应助shor0414采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
浚稚完成签到 ,获得积分10
3分钟前
在水一方应助shor0414采纳,获得10
3分钟前
brwen完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612654
求助须知:如何正确求助?哪些是违规求助? 4017787
关于积分的说明 12436725
捐赠科研通 3699956
什么是DOI,文献DOI怎么找? 2040517
邀请新用户注册赠送积分活动 1073278
科研通“疑难数据库(出版商)”最低求助积分说明 956947