Probabilistic Intersection-Over-Union for Training and Evaluation of Oriented Object Detectors

计算机科学 人工智能 交叉口(航空) 探测器 概率逻辑 培训(气象学) 计算机视觉 目标检测 对象(语法) 模式识别(心理学) 电信 运输工程 地理 工程类 气象学
作者
Jeffri Murrugarra-Llerena,Lucas N. Kirsten,Luis Felipe Zeni,Cláudio R. Jung
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 671-681 被引量:12
标识
DOI:10.1109/tip.2023.3348697
摘要

Oriented object detection is a challenging and relatively new problem. Most existing approaches are based on deep learning and explore Oriented Bounding Boxes (OBBs) to represent the objects. They are typically based on adaptations of traditional detectors that work with Horizontal Bounding Boxes (HBBs), which have been exploring IoU-like loss functions to regress the HBBs. However, extending this idea for OBBs is challenging due to complex formulations or requirement for customized backpropagation implementations. Furthermore, using OBBs presents limitations for irregular or roughly circular objects, since the definition of the ideal OBB is an ambiguous and ill-posed problem. In this work, we jointly tackle the problem of training, representing, and evaluating oriented detectors. We explore Gaussian distributions–called Gaussian Bounding Boxes (GBBs)–as fuzzy representations for oriented objects and propose using a similarity metric between two GBBs based on the Hellinger distance. We show that this metric leads to a differentiable closed-form expression that can be directly used as a localization loss term to train OBB object detectors. We also show that GBBs present a natural representation as elliptical regions (called EBBs), which inherently mitigate ambiguity representation for circular objects. Finally, we empirically show that the proposed similarity metric computed between two GBBs strongly correlates with the IoU between the corresponding EBBs, motivating the name Probabilistic Intersection-over-Union (ProbIoU). Our experiments show that results using ProbIoU as a regression loss are competitive with state-of-the-art alternatives without requiring additional hyperparameters or customized implementations, and that ProbIoU is a promising alternative to evaluate oriented object detectors. Our code is available at https://github.com/ProbIOU/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
琮博完成签到,获得积分10
刚刚
科研通AI5应助凹凸曼采纳,获得30
1秒前
一汪发布了新的文献求助10
2秒前
贰鸟应助听风说采纳,获得20
2秒前
权志龙发布了新的文献求助10
3秒前
符宇新发布了新的文献求助10
3秒前
小郭完成签到,获得积分10
3秒前
深情安青应助哈哈哈采纳,获得30
4秒前
研友_V8RB68完成签到,获得积分10
4秒前
4秒前
蜡笔小新发布了新的文献求助10
5秒前
灵巧一笑发布了新的文献求助10
5秒前
醉熏的涵菱完成签到,获得积分10
6秒前
有为发布了新的文献求助10
6秒前
6秒前
7秒前
Annieqqiu完成签到 ,获得积分10
7秒前
唠叨的以柳完成签到,获得积分20
7秒前
Gu完成签到,获得积分10
8秒前
一汪完成签到,获得积分10
8秒前
斯文莺发布了新的文献求助10
9秒前
xcc完成签到,获得积分10
10秒前
Jally完成签到 ,获得积分10
10秒前
范先生完成签到,获得积分10
10秒前
11秒前
12秒前
yx_cheng应助权志龙采纳,获得20
12秒前
大个应助唠叨的以柳采纳,获得10
12秒前
开放又亦发布了新的文献求助10
13秒前
13秒前
寒川厚完成签到,获得积分10
13秒前
拜拜拜仁发布了新的文献求助10
14秒前
顺利毕业发布了新的文献求助20
14秒前
张先生完成签到 ,获得积分10
14秒前
T拐拐发布了新的文献求助10
15秒前
123发布了新的文献求助10
15秒前
巴黎的防发布了新的文献求助10
15秒前
Litm完成签到 ,获得积分10
15秒前
16秒前
暖落完成签到,获得积分10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650