Hub Node Identification in Urban Rail Transit Network Evolution Using a Ridership-Weighted Network

中心性 节点(物理) 鉴定(生物学) 计算机科学 加权网络 可靠性(半导体) 运输工程 计算机网络 城市轨道交通 拓扑(电路) 复杂网络 工程类 数学 统计 功率(物理) 植物 物理 电气工程 结构工程 量子力学 万维网 生物
作者
Tian Tian,Yanqiu Cheng,Ying Liang,Chen Ma,Kuanmin Chen,Xianbiao Hu
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981231217500
摘要

With the development of the urban rail transit network (URTN), the network structure and performance have changed, and the node importance has also been redistributed. However, little research has been done on how hub nodes change as the network develops over a lengthy period. Moreover, most hub node identification methods only focus on the analysis of topological networks or single-dimension measurements, resulting in inaccurate identification results. To overcome the above limitations, a novel method of hub node identification is proposed. Based on the ridership-weighted network model, the node centrality and reliability are aggregated to quantify the weighted comprehensive importance of the nodes. Furthermore, network invulnerability measurement is used to demonstrate the effectiveness of the proposed method. This method is applied to the Xi’an Urban Rail Transit Network (XURTN) from 2011 to 2021. With the XURTN’s development, its connectivity, balance, and fault tolerance have improved. After the basic network skeleton was formed, the number and proportion of hub nodes increased steadily. By comparing the spatial characteristics of the identified hub nodes over two successive periods, it can be found that the evolution direction of the hub nodes is correlated with the type of new lines and coincides also with the development direction of the urban area. In addition, the node orders of the proposed method have a greater impact on the network vulnerability, in which the network-weighted efficiency [Formula: see text] decreases faster and more dramatically, that is, 1.17%–45.75% more than that of other methods. Overall, this study provides a basis for the URTN and station planning and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzzzzz完成签到,获得积分10
刚刚
刚刚
刚刚
rain完成签到,获得积分10
1秒前
biubiu完成签到,获得积分10
1秒前
小千发布了新的文献求助10
2秒前
wanna发布了新的文献求助10
2秒前
魔幻纸飞机完成签到,获得积分20
3秒前
寻道图强应助xiaofei666采纳,获得30
3秒前
子非鱼完成签到,获得积分10
3秒前
wxy完成签到,获得积分10
3秒前
优亦完成签到 ,获得积分10
4秒前
zonker完成签到,获得积分10
5秒前
励志梦发布了新的文献求助20
5秒前
6秒前
打打应助符从丹采纳,获得10
6秒前
随机子应助wanna采纳,获得10
7秒前
Barid发布了新的文献求助10
7秒前
阿韩完成签到,获得积分20
8秒前
小马甲应助小牌气采纳,获得10
8秒前
xin完成签到,获得积分20
8秒前
光年完成签到,获得积分10
8秒前
9秒前
mao305发布了新的文献求助10
9秒前
西北马局长应助玩命的若采纳,获得10
9秒前
脑洞疼应助奚门长海采纳,获得10
9秒前
CodeCraft应助feifei采纳,获得10
9秒前
10秒前
五岁的哈士奇完成签到,获得积分10
11秒前
11秒前
Y91完成签到,获得积分10
12秒前
jennie完成签到,获得积分10
12秒前
dd完成签到,获得积分10
13秒前
科研通AI2S应助哈哈哈采纳,获得10
13秒前
13秒前
愉快盼曼完成签到,获得积分20
13秒前
可可完成签到 ,获得积分10
13秒前
清雨发布了新的文献求助10
14秒前
知识四面八方来完成签到 ,获得积分10
14秒前
哈哈哈完成签到,获得积分10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180176
求助须知:如何正确求助?哪些是违规求助? 2830569
关于积分的说明 7978633
捐赠科研通 2492138
什么是DOI,文献DOI怎么找? 1329232
科研通“疑难数据库(出版商)”最低求助积分说明 635705
版权声明 602954