Hilbert-Huang Transform-Based Time-Frequency Analysis of Speech Signals for the Identification of Common Cold

希尔伯特-黄变换 计算机科学 语音处理 语音识别 时频分析 瞬时相位 Mel倒谱 人工智能 短时傅里叶变换 熵(时间箭头) 信号处理 模式识别(心理学) 特征提取 傅里叶变换 数学 傅里叶分析 数字信号处理 计算机硬件 滤波器(信号处理) 物理 数学分析 电信 量子力学 计算机视觉 雷达
作者
Pankaj Warule,Siba Prasad Mishra,Suman Deb,Deepak Joshi
标识
DOI:10.1109/tencon58879.2023.10322409
摘要

The current advancements in machine learning research pertaining to speech and health are highly interesting. One aspect of speech-processing research that is gaining popularity is the use of computational paralinguistic analysis to evaluate a variety of health conditions. In this study, we have used the Hilbert-Huang transform (HHT) for the time-frequency analysis of speech signals for the identification of the common cold. The HHT is a time-frequency transform that is adaptive and ideal for non-linear and non-stationary signals. The HHT is a combination of empirical mode decomposition (EMD) and the Hilbert transform (HT). The HHT gives the time-frequency representation (TFR) matrix of the speech signal. Then, the entropy of each frequency component in TFR is computed and used as a distinguishing feature between cold and healthy speech. The efficacy of the proposed methodology is evaluated on the URTIC dataset using a deep neural network. The proposed features achieve UARs of 65.66% and 65.26%, respectively, on the develop and test partitions. The results of the study demonstrate that the time-frequency entropy features extracted using the HHT are effective in distinguishing between cold and healthy speech.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zzzzzd完成签到,获得积分10
2秒前
jingnanlyu完成签到,获得积分10
3秒前
大个应助yongjie采纳,获得10
4秒前
4秒前
NexusExplorer应助zzzzzd采纳,获得10
5秒前
小马甲应助xulei磊采纳,获得10
6秒前
7秒前
7秒前
9秒前
9秒前
10秒前
10秒前
11秒前
四辈发布了新的文献求助10
11秒前
Akim应助Hengjian_Pu采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
迷人问兰发布了新的文献求助10
13秒前
FOB完成签到,获得积分10
14秒前
holic完成签到,获得积分10
14秒前
slin_sjtu发布了新的文献求助10
14秒前
傢誠发布了新的文献求助30
15秒前
16秒前
温暖的沛凝完成签到 ,获得积分10
16秒前
浅夏发布了新的文献求助10
16秒前
ED应助嚯嚯很有才采纳,获得10
17秒前
OxO完成签到,获得积分10
18秒前
19秒前
20秒前
小二郎应助朴实的绿兰采纳,获得10
20秒前
哈密瓜发布了新的文献求助10
22秒前
yongjie发布了新的文献求助10
23秒前
JamesPei应助morena采纳,获得10
24秒前
Hengjian_Pu发布了新的文献求助10
25秒前
在水一方应助唐唐采纳,获得10
25秒前
26秒前
乐乐应助li采纳,获得10
26秒前
26秒前
汉堡包应助yn采纳,获得10
26秒前
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952600
求助须知:如何正确求助?哪些是违规求助? 3498061
关于积分的说明 11090076
捐赠科研通 3228597
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869081
科研通“疑难数据库(出版商)”最低求助积分说明 801344