An efficient mixed-variable generation operator for integrated energy system configuration optimization

数学优化 变量(数学) 可再生能源 计算机科学 操作员(生物学) 最优化问题 范畴变量 工程类 数学 数学分析 生物化学 化学 电气工程 抑制因子 机器学习 转录因子 基因
作者
Nanjiang Dong,Tao Zhang,Rui Wang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:300: 117878-117878 被引量:3
标识
DOI:10.1016/j.enconman.2023.117878
摘要

Energy consumption has skyrocketed as society has progressed, resulting in energy crises and environmental issues. New energy technologies are being developed to address these challenges, and technologies such as the cogeneration of electricity, heating, and cooling are being used to improve energy utilization. The configuration of an energy system has a critical impact on the economics of the system, its ability to supply energy, etc. This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system. The model considers equipment types (categorical variables), equipment quantities (integer variables), and critical parameters (real variables) as optimization variables, where economic performance, the proportion of renewable energy, supply shortage, and dependence on the external power grid are considered unoptimized objectives. This is a multiobjective and mixed-variable problem, and the combination of the two properties poses an excellent challenge for evolutionary algorithms in optimizing the model. Therefore, we propose an efficient generating operator based on a fully connected weighted neural network, called the FCWN operator. This operator overcomes the challenge of the discrete variable space and broken neighborhood relationships in mixed-variable problems. During the algorithm search process, search history information is used to update the fully connected weight network for distribution estimation of the variable space. Offspring are generated based on the fully connected network to improve the algorithm’s search efficiency. In the experimental section, we construct a model with 20 variables and conduct simulation-based configuration optimization for scenarios with 3, 5, and 8 available equipment types. The final obtained Pareto frontier solution set is evaluated using the hypervolume metric, a widely used multiobjective evaluation metric. The Wilcoxon rank sum test on the experimental results shows that the proposed algorithm has better results than other state-of-the-art algorithms at a 95% confidence level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
模糊中正应助自然的菲鹰采纳,获得20
1秒前
天天快乐应助千帆采纳,获得10
1秒前
lll发布了新的文献求助10
1秒前
张鑫发布了新的文献求助10
2秒前
谷飞飞发布了新的文献求助30
3秒前
脑洞疼应助一万光年采纳,获得10
5秒前
小二郎应助落后觅波采纳,获得10
6秒前
今后应助CYH采纳,获得10
8秒前
dalong完成签到,获得积分10
8秒前
瘪良科研完成签到,获得积分10
11秒前
12秒前
16秒前
16秒前
Sun完成签到,获得积分10
16秒前
16秒前
18秒前
研友_Z7WQzZ完成签到,获得积分10
18秒前
李健的小迷弟应助半分青采纳,获得10
19秒前
20秒前
Sun发布了新的文献求助10
21秒前
21秒前
21秒前
高大冷菱完成签到 ,获得积分10
21秒前
奥沙利楠发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
Hh完成签到,获得积分10
23秒前
清蒸鱼发布了新的文献求助10
24秒前
zz发布了新的文献求助30
24秒前
24秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
汉堡包应助科研通管家采纳,获得10
24秒前
一一应助科研通管家采纳,获得10
24秒前
爆米花应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259819
求助须知:如何正确求助?哪些是违规求助? 2901303
关于积分的说明 8314986
捐赠科研通 2570798
什么是DOI,文献DOI怎么找? 1396675
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631853