An efficient mixed-variable generation operator for integrated energy system configuration optimization

数学优化 变量(数学) 可再生能源 计算机科学 操作员(生物学) 最优化问题 范畴变量 工程类 数学 数学分析 生物化学 化学 电气工程 抑制因子 机器学习 转录因子 基因
作者
Nanjiang Dong,Tao Zhang,Rui Wang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:300: 117878-117878 被引量:3
标识
DOI:10.1016/j.enconman.2023.117878
摘要

Energy consumption has skyrocketed as society has progressed, resulting in energy crises and environmental issues. New energy technologies are being developed to address these challenges, and technologies such as the cogeneration of electricity, heating, and cooling are being used to improve energy utilization. The configuration of an energy system has a critical impact on the economics of the system, its ability to supply energy, etc. This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system. The model considers equipment types (categorical variables), equipment quantities (integer variables), and critical parameters (real variables) as optimization variables, where economic performance, the proportion of renewable energy, supply shortage, and dependence on the external power grid are considered unoptimized objectives. This is a multiobjective and mixed-variable problem, and the combination of the two properties poses an excellent challenge for evolutionary algorithms in optimizing the model. Therefore, we propose an efficient generating operator based on a fully connected weighted neural network, called the FCWN operator. This operator overcomes the challenge of the discrete variable space and broken neighborhood relationships in mixed-variable problems. During the algorithm search process, search history information is used to update the fully connected weight network for distribution estimation of the variable space. Offspring are generated based on the fully connected network to improve the algorithm’s search efficiency. In the experimental section, we construct a model with 20 variables and conduct simulation-based configuration optimization for scenarios with 3, 5, and 8 available equipment types. The final obtained Pareto frontier solution set is evaluated using the hypervolume metric, a widely used multiobjective evaluation metric. The Wilcoxon rank sum test on the experimental results shows that the proposed algorithm has better results than other state-of-the-art algorithms at a 95% confidence level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助自由寻冬采纳,获得10
1秒前
TARS发布了新的文献求助10
2秒前
3秒前
3秒前
苹果亦巧发布了新的文献求助30
3秒前
hai关闭了hai文献求助
4秒前
黎建东完成签到,获得积分10
4秒前
4秒前
无辜的蜗牛完成签到 ,获得积分10
4秒前
Aimeee完成签到,获得积分10
5秒前
TAT完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
SciGPT应助王碱采纳,获得10
7秒前
7秒前
吴彦祖完成签到,获得积分10
7秒前
8秒前
mayun95完成签到,获得积分10
9秒前
star完成签到,获得积分20
9秒前
11秒前
11秒前
寒冷猫咪完成签到,获得积分20
11秒前
TARS发布了新的文献求助10
12秒前
13秒前
科研通AI6应助Maxw采纳,获得10
13秒前
13秒前
13秒前
Genius完成签到,获得积分10
13秒前
jj发布了新的文献求助10
15秒前
啦11发布了新的文献求助20
15秒前
16秒前
mayun95发布了新的文献求助10
16秒前
16秒前
17秒前
opair应助多愁善感的鱼采纳,获得10
17秒前
王碱发布了新的文献求助10
17秒前
王一完成签到,获得积分20
18秒前
18秒前
寒冷猫咪发布了新的文献求助10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594261
求助须知:如何正确求助?哪些是违规求助? 4679954
关于积分的说明 14812329
捐赠科研通 4646568
什么是DOI,文献DOI怎么找? 2534851
邀请新用户注册赠送积分活动 1502822
关于科研通互助平台的介绍 1469497