An efficient mixed-variable generation operator for integrated energy system configuration optimization

数学优化 变量(数学) 可再生能源 计算机科学 操作员(生物学) 最优化问题 范畴变量 工程类 数学 数学分析 生物化学 化学 电气工程 抑制因子 机器学习 转录因子 基因
作者
Nanjiang Dong,Tao Zhang,Rui Wang
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:300: 117878-117878 被引量:3
标识
DOI:10.1016/j.enconman.2023.117878
摘要

Energy consumption has skyrocketed as society has progressed, resulting in energy crises and environmental issues. New energy technologies are being developed to address these challenges, and technologies such as the cogeneration of electricity, heating, and cooling are being used to improve energy utilization. The configuration of an energy system has a critical impact on the economics of the system, its ability to supply energy, etc. This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system. The model considers equipment types (categorical variables), equipment quantities (integer variables), and critical parameters (real variables) as optimization variables, where economic performance, the proportion of renewable energy, supply shortage, and dependence on the external power grid are considered unoptimized objectives. This is a multiobjective and mixed-variable problem, and the combination of the two properties poses an excellent challenge for evolutionary algorithms in optimizing the model. Therefore, we propose an efficient generating operator based on a fully connected weighted neural network, called the FCWN operator. This operator overcomes the challenge of the discrete variable space and broken neighborhood relationships in mixed-variable problems. During the algorithm search process, search history information is used to update the fully connected weight network for distribution estimation of the variable space. Offspring are generated based on the fully connected network to improve the algorithm’s search efficiency. In the experimental section, we construct a model with 20 variables and conduct simulation-based configuration optimization for scenarios with 3, 5, and 8 available equipment types. The final obtained Pareto frontier solution set is evaluated using the hypervolume metric, a widely used multiobjective evaluation metric. The Wilcoxon rank sum test on the experimental results shows that the proposed algorithm has better results than other state-of-the-art algorithms at a 95% confidence level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心酬海发布了新的文献求助10
刚刚
刚刚
学习的人类完成签到,获得积分10
刚刚
史小霜发布了新的文献求助10
刚刚
whisper发布了新的文献求助10
1秒前
surfing发布了新的文献求助10
1秒前
1秒前
麦子完成签到,获得积分10
1秒前
猪猪hero发布了新的文献求助10
3秒前
Akim应助小妖怪采纳,获得10
4秒前
dashen应助Shan采纳,获得10
4秒前
4秒前
小衫生发布了新的文献求助10
4秒前
4秒前
4秒前
球球了发布了新的文献求助10
5秒前
5秒前
老实的抽屉完成签到 ,获得积分10
5秒前
6秒前
78888发布了新的文献求助10
6秒前
8秒前
猪猪hero发布了新的文献求助10
8秒前
乐一完成签到,获得积分10
8秒前
Hello应助George Will采纳,获得10
8秒前
qunli完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
浮世一梦完成签到 ,获得积分10
10秒前
顺利毕业完成签到,获得积分20
10秒前
百甲发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
酷波er应助yyy采纳,获得100
11秒前
颖儿发布了新的文献求助10
11秒前
12秒前
12秒前
刘铠瑜发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960295
求助须知:如何正确求助?哪些是违规求助? 4220812
关于积分的说明 13144476
捐赠科研通 4004657
什么是DOI,文献DOI怎么找? 2191579
邀请新用户注册赠送积分活动 1205760
关于科研通互助平台的介绍 1116920