An efficient mixed-variable generation operator for integrated energy system configuration optimization

数学优化 变量(数学) 可再生能源 计算机科学 操作员(生物学) 最优化问题 范畴变量 工程类 数学 转录因子 基因 电气工程 机器学习 生物化学 数学分析 抑制因子 化学
作者
Nanjiang Dong,Tao Zhang,Rui Wang
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:300: 117878-117878 被引量:3
标识
DOI:10.1016/j.enconman.2023.117878
摘要

Energy consumption has skyrocketed as society has progressed, resulting in energy crises and environmental issues. New energy technologies are being developed to address these challenges, and technologies such as the cogeneration of electricity, heating, and cooling are being used to improve energy utilization. The configuration of an energy system has a critical impact on the economics of the system, its ability to supply energy, etc. This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system. The model considers equipment types (categorical variables), equipment quantities (integer variables), and critical parameters (real variables) as optimization variables, where economic performance, the proportion of renewable energy, supply shortage, and dependence on the external power grid are considered unoptimized objectives. This is a multiobjective and mixed-variable problem, and the combination of the two properties poses an excellent challenge for evolutionary algorithms in optimizing the model. Therefore, we propose an efficient generating operator based on a fully connected weighted neural network, called the FCWN operator. This operator overcomes the challenge of the discrete variable space and broken neighborhood relationships in mixed-variable problems. During the algorithm search process, search history information is used to update the fully connected weight network for distribution estimation of the variable space. Offspring are generated based on the fully connected network to improve the algorithm’s search efficiency. In the experimental section, we construct a model with 20 variables and conduct simulation-based configuration optimization for scenarios with 3, 5, and 8 available equipment types. The final obtained Pareto frontier solution set is evaluated using the hypervolume metric, a widely used multiobjective evaluation metric. The Wilcoxon rank sum test on the experimental results shows that the proposed algorithm has better results than other state-of-the-art algorithms at a 95% confidence level.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
3秒前
唐的一笔发布了新的文献求助10
3秒前
研友_VZG7GZ应助佳慧采纳,获得10
3秒前
JUGG发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
酷爱小飞发布了新的文献求助10
5秒前
少年游完成签到,获得积分20
7秒前
深情安青应助123采纳,获得10
7秒前
8秒前
苗条的代曼完成签到,获得积分10
8秒前
韶华关注了科研通微信公众号
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
11秒前
山高水长完成签到,获得积分20
12秒前
12秒前
闪电发布了新的文献求助10
12秒前
13秒前
霜幕发布了新的文献求助10
13秒前
积极如雪完成签到,获得积分10
14秒前
15秒前
15秒前
优美紫槐发布了新的文献求助10
15秒前
优雅泡芙完成签到,获得积分10
15秒前
16秒前
学术菜鸟发布了新的文献求助30
17秒前
18秒前
18秒前
18秒前
贺贺发布了新的文献求助10
18秒前
19秒前
20秒前
麻烦~发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711933
求助须知:如何正确求助?哪些是违规求助? 5206722
关于积分的说明 15265734
捐赠科研通 4864032
什么是DOI,文献DOI怎么找? 2611152
邀请新用户注册赠送积分活动 1561416
关于科研通互助平台的介绍 1518736