An efficient mixed-variable generation operator for integrated energy system configuration optimization

数学优化 变量(数学) 可再生能源 计算机科学 操作员(生物学) 最优化问题 范畴变量 工程类 数学 数学分析 生物化学 化学 电气工程 抑制因子 机器学习 转录因子 基因
作者
Nanjiang Dong,Tao Zhang,Rui Wang
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:300: 117878-117878 被引量:3
标识
DOI:10.1016/j.enconman.2023.117878
摘要

Energy consumption has skyrocketed as society has progressed, resulting in energy crises and environmental issues. New energy technologies are being developed to address these challenges, and technologies such as the cogeneration of electricity, heating, and cooling are being used to improve energy utilization. The configuration of an energy system has a critical impact on the economics of the system, its ability to supply energy, etc. This study establishes a multiobjective mixed-variable configuration optimization model for a comprehensive combined cooling, heating, and power energy system. The model considers equipment types (categorical variables), equipment quantities (integer variables), and critical parameters (real variables) as optimization variables, where economic performance, the proportion of renewable energy, supply shortage, and dependence on the external power grid are considered unoptimized objectives. This is a multiobjective and mixed-variable problem, and the combination of the two properties poses an excellent challenge for evolutionary algorithms in optimizing the model. Therefore, we propose an efficient generating operator based on a fully connected weighted neural network, called the FCWN operator. This operator overcomes the challenge of the discrete variable space and broken neighborhood relationships in mixed-variable problems. During the algorithm search process, search history information is used to update the fully connected weight network for distribution estimation of the variable space. Offspring are generated based on the fully connected network to improve the algorithm’s search efficiency. In the experimental section, we construct a model with 20 variables and conduct simulation-based configuration optimization for scenarios with 3, 5, and 8 available equipment types. The final obtained Pareto frontier solution set is evaluated using the hypervolume metric, a widely used multiobjective evaluation metric. The Wilcoxon rank sum test on the experimental results shows that the proposed algorithm has better results than other state-of-the-art algorithms at a 95% confidence level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bxyyy应助坤坤大白采纳,获得10
刚刚
才哥发布了新的文献求助10
刚刚
1秒前
2秒前
充电宝应助天气好的话采纳,获得10
4秒前
4秒前
jay完成签到,获得积分10
4秒前
肖婷婷发布了新的文献求助10
6秒前
7秒前
op118no2发布了新的文献求助10
7秒前
坤坤大白完成签到,获得积分10
9秒前
隐形曼青应助ew采纳,获得30
9秒前
Litoivda发布了新的文献求助30
9秒前
10秒前
才哥完成签到,获得积分10
11秒前
张哈哈发布了新的文献求助10
15秒前
15秒前
毛豆爱睡觉完成签到,获得积分20
16秒前
17秒前
18秒前
18秒前
皮皮虾小段完成签到,获得积分10
20秒前
上官若男应助冷傲凝琴采纳,获得10
20秒前
昔年完成签到 ,获得积分0
20秒前
21秒前
l六分之一完成签到,获得积分10
22秒前
ew发布了新的文献求助30
23秒前
24秒前
26秒前
26秒前
bofu完成签到,获得积分10
26秒前
城市没有日出完成签到,获得积分10
27秒前
27秒前
在水一方应助Litoivda采纳,获得20
27秒前
无忧无虑发布了新的文献求助10
29秒前
飘逸楷瑞发布了新的文献求助20
30秒前
30秒前
beyondjun发布了新的文献求助10
31秒前
32秒前
冰霜雨露完成签到 ,获得积分10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962328
求助须知:如何正确求助?哪些是违规求助? 3508472
关于积分的说明 11141017
捐赠科研通 3241123
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872827
科研通“疑难数据库(出版商)”最低求助积分说明 803382