A prediction model for blood-brain barrier penetrating peptides based on masked peptide transformers with dynamic routing

变压器 计算机科学 血脑屏障 化学 神经科学 生物化学 工程类 生物 电气工程 中枢神经系统 电压
作者
Chunwei Ma,Russ Wolfinger
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:5
标识
DOI:10.1093/bib/bbad399
摘要

Abstract Blood-brain barrier penetrating peptides (BBBPs) are short peptide sequences that possess the ability to traverse the selective blood-brain interface, making them valuable drug candidates or carriers for various payloads. However, the in vivo or in vitro validation of BBBPs is resource-intensive and time-consuming, driving the need for accurate in silico prediction methods. Unfortunately, the scarcity of experimentally validated BBBPs hinders the efficacy of current machine-learning approaches in generating reliable predictions. In this paper, we present DeepB3P3, a novel framework for BBBPs prediction. Our contribution encompasses four key aspects. Firstly, we propose a novel deep learning model consisting of a transformer encoder layer, a convolutional network backbone, and a capsule network classification head. This integrated architecture effectively learns representative features from peptide sequences. Secondly, we introduce masked peptides as a powerful data augmentation technique to compensate for small training set sizes in BBBP prediction. Thirdly, we develop a novel threshold-tuning method to handle imbalanced data by approximating the optimal decision threshold using the training set. Lastly, DeepB3P3 provides an accurate estimation of the uncertainty level associated with each prediction. Through extensive experiments, we demonstrate that DeepB3P3 achieves state-of-the-art accuracy of up to 98.31% on a benchmarking dataset, solidifying its potential as a promising computational tool for the prediction and discovery of BBBPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sacchride发布了新的文献求助10
1秒前
3秒前
4秒前
大个应助畅快芝麻采纳,获得10
4秒前
大模型应助nena采纳,获得10
4秒前
4秒前
5秒前
浮游应助简单的paper采纳,获得20
5秒前
我喜欢高浩洋完成签到,获得积分10
5秒前
cx完成签到,获得积分10
5秒前
共享精神应助dididi采纳,获得10
6秒前
11关闭了11文献求助
6秒前
6秒前
el完成签到 ,获得积分10
7秒前
8秒前
8秒前
AWESOME Ling发布了新的文献求助10
8秒前
别摆烂了发布了新的文献求助10
8秒前
小情绪应助科研通管家采纳,获得10
10秒前
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
Alex应助科研通管家采纳,获得30
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
小情绪应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
11秒前
英姑应助科研通管家采纳,获得10
11秒前
充电宝应助科研通管家采纳,获得10
11秒前
生动梦松应助科研通管家采纳,获得150
11秒前
一叶知秋应助科研通管家采纳,获得10
11秒前
完美世界应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
nena完成签到,获得积分10
11秒前
11秒前
追寻的牛排完成签到,获得积分10
12秒前
fqk完成签到,获得积分10
13秒前
赘婿应助YJY采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950360
求助须知:如何正确求助?哪些是违规求助? 4213390
关于积分的说明 13103546
捐赠科研通 3995055
什么是DOI,文献DOI怎么找? 2186753
邀请新用户注册赠送积分活动 1202024
关于科研通互助平台的介绍 1115355