A prediction model for blood-brain barrier penetrating peptides based on masked peptide transformers with dynamic routing

变压器 计算机科学 血脑屏障 化学 神经科学 生物化学 工程类 生物 电气工程 中枢神经系统 电压
作者
Chunwei Ma,Russ Wolfinger
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:5
标识
DOI:10.1093/bib/bbad399
摘要

Abstract Blood-brain barrier penetrating peptides (BBBPs) are short peptide sequences that possess the ability to traverse the selective blood-brain interface, making them valuable drug candidates or carriers for various payloads. However, the in vivo or in vitro validation of BBBPs is resource-intensive and time-consuming, driving the need for accurate in silico prediction methods. Unfortunately, the scarcity of experimentally validated BBBPs hinders the efficacy of current machine-learning approaches in generating reliable predictions. In this paper, we present DeepB3P3, a novel framework for BBBPs prediction. Our contribution encompasses four key aspects. Firstly, we propose a novel deep learning model consisting of a transformer encoder layer, a convolutional network backbone, and a capsule network classification head. This integrated architecture effectively learns representative features from peptide sequences. Secondly, we introduce masked peptides as a powerful data augmentation technique to compensate for small training set sizes in BBBP prediction. Thirdly, we develop a novel threshold-tuning method to handle imbalanced data by approximating the optimal decision threshold using the training set. Lastly, DeepB3P3 provides an accurate estimation of the uncertainty level associated with each prediction. Through extensive experiments, we demonstrate that DeepB3P3 achieves state-of-the-art accuracy of up to 98.31% on a benchmarking dataset, solidifying its potential as a promising computational tool for the prediction and discovery of BBBPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
CodeCraft应助平常远山采纳,获得10
1秒前
Owen应助Promise采纳,获得10
3秒前
4秒前
5秒前
科研通AI5应助DDB采纳,获得10
5秒前
6秒前
所所应助爱X7的嘛喽采纳,获得30
6秒前
星辰大海应助爱X7的嘛喽采纳,获得10
6秒前
6秒前
谦让乐曲完成签到,获得积分20
7秒前
8秒前
海棠微雨完成签到,获得积分10
8秒前
9秒前
。。。完成签到,获得积分10
9秒前
大椒完成签到 ,获得积分10
9秒前
唐小刚完成签到,获得积分10
10秒前
HAHA完成签到,获得积分10
11秒前
Yyinge发布了新的文献求助10
11秒前
11秒前
小芒果完成签到,获得积分0
11秒前
11秒前
11秒前
平常远山发布了新的文献求助10
12秒前
12秒前
和谐蛋蛋完成签到,获得积分10
12秒前
yuhaolove发布了新的文献求助10
12秒前
鲍勃完成签到,获得积分10
14秒前
ss发布了新的文献求助10
14秒前
16秒前
咯咯哒发布了新的文献求助10
18秒前
健忘的曼卉完成签到,获得积分10
18秒前
18秒前
清新的碧曼完成签到 ,获得积分10
18秒前
18秒前
彭于晏应助lily336699采纳,获得10
18秒前
19秒前
Casey完成签到 ,获得积分10
19秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769147
求助须知:如何正确求助?哪些是违规求助? 3314193
关于积分的说明 10171062
捐赠科研通 3029255
什么是DOI,文献DOI怎么找? 1662296
邀请新用户注册赠送积分活动 794827
科研通“疑难数据库(出版商)”最低求助积分说明 756421