🔥 科研通第二届『应助活动周』正在进行中,3月24-30日求助秒级响应🚀,千元现金等你拿。当前排名🏆 📚 中科院2025期刊分区📊 已更新
亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessing the Potential of a Deep Learning Tool to Improve Fracture Detection by Radiologists and Emergency Physicians on Extremity Radiographs

医学 射线照相术 接收机工作特性 急诊分诊台 放射科 急诊科 考试(生物学) 诊断准确性 核医学 回顾性队列研究 医学物理学 急诊医学 外科 内科学 古生物学 精神科 生物
作者
Tianyuan Fu,Vidya Sankar Viswanathan,Alexandre Attia,Elie Zerbib-Attal,Vijaya Kosaraju,Richard Barger,Julien Vidal,Leonardo Kayat Bittencourt,Navid Faraji
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (5): 1989-1999 被引量:7
标识
DOI:10.1016/j.acra.2023.10.042
摘要

Rationale and Objectives To evaluate the standalone performance of a deep learning (DL) based fracture detection tool on extremity radiographs and assess the performance of radiologists and emergency physicians in identifying fractures of the extremities with and without the DL aid. Materials and Methods The DL tool was previously developed using 132,000 appendicular skeletal radiographs divided into 87% training, 11% validation, and 2% test sets. Stand-alone performance was evaluated on 2626 de-identified radiographs from a single institution in Ohio, including at least 140 exams per body region. Consensus from three US board-certified musculoskeletal (MSK) radiologists served as ground truth. A multi-reader retrospective study was performed in which 24 readers (eight each of emergency physicians, non-MSK radiologists, and MSK radiologists) identified fractures in 186 cases during two independent sessions with and without DL aid, separated by a one-month washout period. The accuracy (area under the receiver operating curve), sensitivity, specificity, and reading time were compared with and without model aid. Results The model achieved a stand-alone accuracy of 0.986, sensitivity of 0.987, and specificity of 0.885, and high accuracy (> 0.95) across stratification for body part, age, gender, radiographic views, and scanner type. With DL aid, reader accuracy increased by 0.047 (95% CI: 0.034, 0.061; p = 0.004) and sensitivity significantly improved from 0.865 (95% CI: 0.848, 0.881) to 0.955 (95% CI: 0.944, 0.964). Average reading time was shortened by 7.1 s (27%) per exam. When stratified by physician type, this improvement was greater for emergency physicians and non-MSK radiologists. Conclusion The DL tool demonstrated high stand-alone accuracy, aided physician diagnostic accuracy, and decreased interpretation time. To evaluate the standalone performance of a deep learning (DL) based fracture detection tool on extremity radiographs and assess the performance of radiologists and emergency physicians in identifying fractures of the extremities with and without the DL aid. The DL tool was previously developed using 132,000 appendicular skeletal radiographs divided into 87% training, 11% validation, and 2% test sets. Stand-alone performance was evaluated on 2626 de-identified radiographs from a single institution in Ohio, including at least 140 exams per body region. Consensus from three US board-certified musculoskeletal (MSK) radiologists served as ground truth. A multi-reader retrospective study was performed in which 24 readers (eight each of emergency physicians, non-MSK radiologists, and MSK radiologists) identified fractures in 186 cases during two independent sessions with and without DL aid, separated by a one-month washout period. The accuracy (area under the receiver operating curve), sensitivity, specificity, and reading time were compared with and without model aid. The model achieved a stand-alone accuracy of 0.986, sensitivity of 0.987, and specificity of 0.885, and high accuracy (> 0.95) across stratification for body part, age, gender, radiographic views, and scanner type. With DL aid, reader accuracy increased by 0.047 (95% CI: 0.034, 0.061; p = 0.004) and sensitivity significantly improved from 0.865 (95% CI: 0.848, 0.881) to 0.955 (95% CI: 0.944, 0.964). Average reading time was shortened by 7.1 s (27%) per exam. When stratified by physician type, this improvement was greater for emergency physicians and non-MSK radiologists. The DL tool demonstrated high stand-alone accuracy, aided physician diagnostic accuracy, and decreased interpretation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
应助活动周(3月24-30日)排名
今日排名(3月29日)
1#22 nozero
11
110
2#16 小杨同学
8
80
3#10 levn
5
50
4#4 cllcx
2
20
5#4 天黑不打烊
2
20
6#4 遇上就这样吧
2
20
7#2 pcr163
1
10
8#2 kyri
1
10
9#2 MchemG
1
10
10#2 andrele
1
10
11#2 anagenesis
1
10
12#2 Nichols
1
10
第1名:50元;第2名:30元;第3名:10元

总排名
1#7479 nozero
2994
44850
2#7090 SYLH
3535
35550
3#6143 shinysparrow
2529
36140
4#5943 科研小民工
2282
36610
5#3902 xjcy
1944
19580
6#2707 劲秉
596
21110
7#2488 小透明
985
15030
8#1891 天才小能喵
901
9900
9#1796 迟大猫
898
8980
10#1464 CAOHOU
728
7360
11#1200 S77
600
6000
12#1162 昏睡的蟠桃
296
8660
13#1072 加菲丰丰
532
5400
14#1035 从容芮
436
5990
15#954 浦肯野
395
5590
16#840 子车茗
386
4540
17#829 36456657
404
4250
18#790 枫叶
392
3980
19#654 毛豆
325
3290
20#647 tuanheqi
56
5910
21#638 果粒橙
319
3190
22#614 1+1
263
3510
23#586 cdercder
236
3500
24#564 QOP
280
2840
25#523 史小菜
241
2820
26#514 pcr163
54
4600
27#509 curtisness
249
2600
28#452 彭于彦祖
127
3250
29#432 研友_Z30GJ8
215
2170
30#394 实验好难
182
2120
31#370 Catalina_S
182
1880
32#369 我是站长才怪
181
1880
33#342 Singularity
170
1720
34#326 默默地读文献
163
1630
35#308 HEIKU
154
1540
36#294 VDC
97
1970
37#294 不懈奋进
131
1630
38#294 柒月
49
2450
39#292 lin
145
1470
40#288 火星上的菲鹰
138
1500
41#284 lyl19880908
140
1440
42#283 点着太阳的人
98
1850
43#274 一一
89
1850
44#273 sunyz
51
2220
45#272 muxiangrong
117
1550
46#270 遇上就这样吧
129
1410
47#266 cctv18
131
1350
48#258 从容的惋庭
129
1290
49#255 suibianba
120
1350
50#254 见青山
126
1280
第1名:500元;第2名:300元;第3名:100元
第4名:50元;第5名:30元;第6-10名:10元

10分钟更新一次,完整排名情况
实时播报
丘比特应助wciphone采纳,获得10
2秒前
4秒前
6秒前
11秒前
HD发布了新的文献求助10
15秒前
缓慢的语琴完成签到,获得积分10
19秒前
WzH发布了新的文献求助10
28秒前
28秒前
29秒前
33秒前
wciphone发布了新的文献求助10
34秒前
hdcz发布了新的文献求助10
34秒前
siso完成签到,获得积分10
36秒前
WzH完成签到,获得积分10
36秒前
科研通AI2S应助wciphone采纳,获得10
48秒前
56秒前
露露发布了新的文献求助10
1分钟前
1分钟前
程忆发布了新的文献求助10
1分钟前
1分钟前
程忆完成签到,获得积分10
1分钟前
桐桐应助科研通管家采纳,获得30
1分钟前
浦肯野应助科研通管家采纳,获得30
1分钟前
完美世界应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
李健应助worrysyx采纳,获得50
1分钟前
桐桐应助信号灯采纳,获得10
1分钟前
Song关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
worrysyx发布了新的文献求助50
1分钟前
1分钟前
我是老大应助标致千儿采纳,获得10
1分钟前
充电宝应助标致千儿采纳,获得10
1分钟前
2分钟前
Song发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 3000
Production Logging: Theoretical and Interpretive Elements 2700
On Troodon validus, an orthopodous dinosaur from the Belly River Cretaceous of Alberta, Canada 2000
Continuum Thermodynamics and Material Modelling 2000
Conference Record, IAS Annual Meeting 1977 1250
NSF/ANSI 49-2024 Biosafety Cabinetry: Design, Construction, Performance, and Field Certification 500
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3642803
求助须知:如何正确求助?哪些是违规求助? 3210422
关于积分的说明 9680537
捐赠科研通 2917484
什么是DOI,文献DOI怎么找? 1596859
邀请新用户注册赠送积分活动 751792
科研通“疑难数据库(出版商)”最低求助积分说明 731699