已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Generalizing Graph Neural Networks on Out-of-Distribution Graphs

虚假关系 计算机科学 人工智能 联营 机器学习 利用 因果推理 推论 图形 因果模型 超参数 理论计算机科学 数学 计量经济学 计算机安全 统计
作者
Shaohua Fan,Xiao Wang,Chuan Shi,Peng Cui,Bai Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 322-337 被引量:11
标识
DOI:10.1109/tpami.2023.3321097
摘要

Graph Neural Networks (GNNs) are proposed without considering the agnostic distribution shifts between training graphs and testing graphs, inducing the degeneration of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. The fundamental reason for such degeneration is that most GNNs are developed based on the I.I.D hypothesis. In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation. This learning mechanism inherits from the common characteristics of machine learning approaches. However, such spurious correlations may change in the wild testing environments, leading to the failure of GNNs. Therefore, eliminating the impact of spurious correlations is crucial for stable GNN models. To this end, in this paper, we argue that the spurious correlation exists among subgraph-level units and analyze the degeneration of GNN in causal view. Based on the causal view analysis, we propose a general causal representation framework for stable GNN, called StableGNN. The main idea of this framework is to extract high-level representations from raw graph data first and resort to the distinguishing ability of causal inference to help the model get rid of spurious correlations. Particularly, to extract meaningful high-level representations, we exploit a differentiable graph pooling layer to extract subgraph-based representations by an end-to-end manner. Furthermore, inspired by the confounder balancing techniques from causal inference, based on the learned high-level representations, we propose a causal variable distinguishing regularizer to correct the biased training distribution by learning a set of sample weights. Hence, GNNs would concentrate more on the true connection between discriminative substructures and labels. Extensive experiments are conducted on both synthetic datasets with various distribution shift degrees and eight real-world OOD graph datasets. The results well verify that the proposed model StableGNN not only outperforms the state-of-the-arts but also provides a flexible framework to enhance existing GNNs. In addition, the interpretability experiments validate that StableGNN could leverage causal structures for predictions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
墨辰完成签到 ,获得积分10
刚刚
fisher完成签到 ,获得积分10
刚刚
无情的踏歌完成签到,获得积分0
刚刚
1秒前
766465完成签到 ,获得积分0
1秒前
xzx发布了新的文献求助10
1秒前
小易完成签到 ,获得积分10
2秒前
忽远忽近的她完成签到 ,获得积分10
2秒前
遇上就这样吧完成签到,获得积分0
3秒前
王小明完成签到 ,获得积分20
3秒前
3秒前
3秒前
Thecold完成签到,获得积分10
3秒前
TTTHANKS完成签到 ,获得积分10
4秒前
weibo完成签到,获得积分10
4秒前
辛勤远望完成签到,获得积分10
4秒前
4秒前
CYL07完成签到 ,获得积分10
4秒前
内向的火车完成签到 ,获得积分10
4秒前
4秒前
nuture完成签到 ,获得积分10
6秒前
彭小龙完成签到 ,获得积分10
6秒前
满意书包完成签到 ,获得积分10
7秒前
7秒前
kk发布了新的文献求助10
7秒前
子平完成签到 ,获得积分0
8秒前
Huangy000完成签到 ,获得积分10
8秒前
于鱼发布了新的文献求助10
8秒前
李多多发布了新的文献求助10
8秒前
阔达的衣完成签到 ,获得积分10
9秒前
zhangxu09a发布了新的文献求助10
9秒前
雨霧雲完成签到,获得积分10
9秒前
椰子完成签到 ,获得积分10
9秒前
曼曼完成签到 ,获得积分10
10秒前
01259完成签到 ,获得积分10
10秒前
qiandi完成签到 ,获得积分10
10秒前
LucienS完成签到,获得积分10
10秒前
WangWaud完成签到,获得积分10
10秒前
pterionGao完成签到 ,获得积分10
10秒前
祁尒完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590141
求助须知:如何正确求助?哪些是违规求助? 4674591
关于积分的说明 14794672
捐赠科研通 4630392
什么是DOI,文献DOI怎么找? 2532610
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10