重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Generalizing Graph Neural Networks on Out-of-Distribution Graphs

虚假关系 计算机科学 人工智能 联营 机器学习 利用 因果推理 推论 图形 因果模型 超参数 理论计算机科学 数学 计量经济学 计算机安全 统计
作者
Shaohua Fan,Xiao Wang,Chuan Shi,Peng Cui,Bai Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 322-337 被引量:11
标识
DOI:10.1109/tpami.2023.3321097
摘要

Graph Neural Networks (GNNs) are proposed without considering the agnostic distribution shifts between training graphs and testing graphs, inducing the degeneration of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. The fundamental reason for such degeneration is that most GNNs are developed based on the I.I.D hypothesis. In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation. This learning mechanism inherits from the common characteristics of machine learning approaches. However, such spurious correlations may change in the wild testing environments, leading to the failure of GNNs. Therefore, eliminating the impact of spurious correlations is crucial for stable GNN models. To this end, in this paper, we argue that the spurious correlation exists among subgraph-level units and analyze the degeneration of GNN in causal view. Based on the causal view analysis, we propose a general causal representation framework for stable GNN, called StableGNN. The main idea of this framework is to extract high-level representations from raw graph data first and resort to the distinguishing ability of causal inference to help the model get rid of spurious correlations. Particularly, to extract meaningful high-level representations, we exploit a differentiable graph pooling layer to extract subgraph-based representations by an end-to-end manner. Furthermore, inspired by the confounder balancing techniques from causal inference, based on the learned high-level representations, we propose a causal variable distinguishing regularizer to correct the biased training distribution by learning a set of sample weights. Hence, GNNs would concentrate more on the true connection between discriminative substructures and labels. Extensive experiments are conducted on both synthetic datasets with various distribution shift degrees and eight real-world OOD graph datasets. The results well verify that the proposed model StableGNN not only outperforms the state-of-the-arts but also provides a flexible framework to enhance existing GNNs. In addition, the interpretability experiments validate that StableGNN could leverage causal structures for predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111发布了新的文献求助10
刚刚
程君发布了新的文献求助10
刚刚
1秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
2秒前
111发布了新的文献求助20
2秒前
小猪坨完成签到,获得积分10
2秒前
guy发布了新的文献求助10
2秒前
bkagyin应助Refuel采纳,获得10
2秒前
科研通AI6应助麦麦脆汁猪采纳,获得10
3秒前
杨三发布了新的文献求助10
3秒前
哈哈哈完成签到,获得积分10
3秒前
泥萌完成签到 ,获得积分10
3秒前
饶天源发布了新的文献求助10
3秒前
3秒前
cyq发布了新的文献求助10
3秒前
4秒前
dddd完成签到,获得积分10
4秒前
青青发布了新的文献求助10
4秒前
a379896033完成签到 ,获得积分10
4秒前
4秒前
wy.he应助在下雨采纳,获得20
5秒前
赘婿应助淋淋采纳,获得10
5秒前
耍酷的雅阳完成签到 ,获得积分10
5秒前
5秒前
斯文败类应助六月雪采纳,获得10
5秒前
6秒前
一枚小豆完成签到,获得积分10
6秒前
善学以致用应助鎏芒兔子采纳,获得10
6秒前
岁月轮回发布了新的文献求助10
6秒前
7秒前
7秒前
pnn_1214发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
无辜的笙发布了新的文献求助10
8秒前
顺心冷雁完成签到,获得积分10
8秒前
8秒前
CR7应助Wonder采纳,获得20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605