清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generalizing Graph Neural Networks on Out-of-Distribution Graphs

虚假关系 计算机科学 人工智能 联营 机器学习 利用 因果推理 推论 图形 因果模型 超参数 理论计算机科学 数学 计量经济学 计算机安全 统计
作者
Shaohua Fan,Xiao Wang,Chuan Shi,Peng Cui,Bai Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (1): 322-337 被引量:11
标识
DOI:10.1109/tpami.2023.3321097
摘要

Graph Neural Networks (GNNs) are proposed without considering the agnostic distribution shifts between training graphs and testing graphs, inducing the degeneration of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. The fundamental reason for such degeneration is that most GNNs are developed based on the I.I.D hypothesis. In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation. This learning mechanism inherits from the common characteristics of machine learning approaches. However, such spurious correlations may change in the wild testing environments, leading to the failure of GNNs. Therefore, eliminating the impact of spurious correlations is crucial for stable GNN models. To this end, in this paper, we argue that the spurious correlation exists among subgraph-level units and analyze the degeneration of GNN in causal view. Based on the causal view analysis, we propose a general causal representation framework for stable GNN, called StableGNN. The main idea of this framework is to extract high-level representations from raw graph data first and resort to the distinguishing ability of causal inference to help the model get rid of spurious correlations. Particularly, to extract meaningful high-level representations, we exploit a differentiable graph pooling layer to extract subgraph-based representations by an end-to-end manner. Furthermore, inspired by the confounder balancing techniques from causal inference, based on the learned high-level representations, we propose a causal variable distinguishing regularizer to correct the biased training distribution by learning a set of sample weights. Hence, GNNs would concentrate more on the true connection between discriminative substructures and labels. Extensive experiments are conducted on both synthetic datasets with various distribution shift degrees and eight real-world OOD graph datasets. The results well verify that the proposed model StableGNN not only outperforms the state-of-the-arts but also provides a flexible framework to enhance existing GNNs. In addition, the interpretability experiments validate that StableGNN could leverage causal structures for predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
SSSSS发布了新的文献求助10
8秒前
酷炫的一笑完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
15秒前
SSSSS完成签到,获得积分10
18秒前
紫荆完成签到,获得积分10
19秒前
汉堡包应助Dz1990m采纳,获得10
19秒前
haralee完成签到 ,获得积分10
20秒前
Wang发布了新的文献求助10
21秒前
33秒前
Dz1990m发布了新的文献求助10
36秒前
jlwang完成签到,获得积分10
39秒前
草木完成签到 ,获得积分10
44秒前
HY完成签到 ,获得积分10
49秒前
科研通AI2S应助紫荆采纳,获得30
51秒前
mickaqi完成签到 ,获得积分10
1分钟前
NexusExplorer应助酷炫的一笑采纳,获得10
1分钟前
Silence完成签到 ,获得积分10
1分钟前
vampire完成签到,获得积分10
1分钟前
1分钟前
1分钟前
eth完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
1分钟前
1分钟前
乔杰完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
独孤完成签到 ,获得积分10
2分钟前
2分钟前
我独舞完成签到 ,获得积分10
2分钟前
任性翠安完成签到 ,获得积分10
2分钟前
英俊的铭应助111111111采纳,获得10
2分钟前
疯狂的囧完成签到 ,获得积分10
3分钟前
3分钟前
开心每一天完成签到 ,获得积分10
3分钟前
111111111发布了新的文献求助10
3分钟前
zhang完成签到 ,获得积分10
3分钟前
poki完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292