Generalizing Graph Neural Networks on Out-of-Distribution Graphs

虚假关系 计算机科学 人工智能 联营 机器学习 利用 因果推理 推论 图形 因果模型 超参数 理论计算机科学 数学 计量经济学 统计 计算机安全
作者
Shaohua Fan,Xiao Wang,Chuan Shi,Peng Cui,Bai Wang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 322-337 被引量:11
标识
DOI:10.1109/tpami.2023.3321097
摘要

Graph Neural Networks (GNNs) are proposed without considering the agnostic distribution shifts between training graphs and testing graphs, inducing the degeneration of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. The fundamental reason for such degeneration is that most GNNs are developed based on the I.I.D hypothesis. In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation. This learning mechanism inherits from the common characteristics of machine learning approaches. However, such spurious correlations may change in the wild testing environments, leading to the failure of GNNs. Therefore, eliminating the impact of spurious correlations is crucial for stable GNN models. To this end, in this paper, we argue that the spurious correlation exists among subgraph-level units and analyze the degeneration of GNN in causal view. Based on the causal view analysis, we propose a general causal representation framework for stable GNN, called StableGNN. The main idea of this framework is to extract high-level representations from raw graph data first and resort to the distinguishing ability of causal inference to help the model get rid of spurious correlations. Particularly, to extract meaningful high-level representations, we exploit a differentiable graph pooling layer to extract subgraph-based representations by an end-to-end manner. Furthermore, inspired by the confounder balancing techniques from causal inference, based on the learned high-level representations, we propose a causal variable distinguishing regularizer to correct the biased training distribution by learning a set of sample weights. Hence, GNNs would concentrate more on the true connection between discriminative substructures and labels. Extensive experiments are conducted on both synthetic datasets with various distribution shift degrees and eight real-world OOD graph datasets. The results well verify that the proposed model StableGNN not only outperforms the state-of-the-arts but also provides a flexible framework to enhance existing GNNs. In addition, the interpretability experiments validate that StableGNN could leverage causal structures for predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
合适的寄灵完成签到 ,获得积分10
2秒前
爱静静应助凌代萱采纳,获得10
6秒前
维维完成签到 ,获得积分10
8秒前
韭菜盒子完成签到,获得积分20
8秒前
zx完成签到 ,获得积分10
11秒前
ZH完成签到 ,获得积分10
17秒前
茶包完成签到,获得积分10
20秒前
guoguo完成签到,获得积分10
32秒前
寒暄half完成签到 ,获得积分10
33秒前
小二郎完成签到 ,获得积分10
38秒前
韭菜发布了新的文献求助10
38秒前
狂野的白开水完成签到 ,获得积分10
39秒前
CCC完成签到 ,获得积分10
40秒前
乐正怡完成签到 ,获得积分0
41秒前
研友_VZG7GZ应助韭菜采纳,获得10
47秒前
51秒前
jeffrey完成签到,获得积分10
51秒前
Yh完成签到 ,获得积分10
53秒前
左丘映易完成签到,获得积分0
53秒前
volcano完成签到 ,获得积分10
1分钟前
1分钟前
大胆的忆寒完成签到,获得积分10
1分钟前
韭菜发布了新的文献求助10
1分钟前
楚襄谷完成签到 ,获得积分10
1分钟前
魔幻安南完成签到 ,获得积分10
1分钟前
超级的妙晴完成签到 ,获得积分10
1分钟前
充电宝应助韭菜采纳,获得10
1分钟前
大模型应助韭菜采纳,获得10
1分钟前
hookie完成签到 ,获得积分10
1分钟前
1分钟前
佳期如梦完成签到 ,获得积分10
1分钟前
yzshiny完成签到 ,获得积分0
1分钟前
寂寞圣贤完成签到,获得积分10
1分钟前
Brian发布了新的文献求助10
1分钟前
小木子完成签到,获得积分10
1分钟前
琦qi完成签到 ,获得积分10
1分钟前
1分钟前
阡陌完成签到,获得积分10
1分钟前
小木子发布了新的文献求助10
1分钟前
可爱的紫菜完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162398
求助须知:如何正确求助?哪些是违规求助? 2813350
关于积分的说明 7899832
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316556
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142