Augmented Decision-Making in wound Care: Evaluating the clinical utility of a Deep-Learning model for pressure injury staging

一致性 分类 卷积神经网络 医学 置信区间 人工智能 临床决策支持系统 临床决策 病人护理 卡帕 机器学习 医学物理学 计算机科学 决策支持系统 重症监护医学 内科学 护理部 数学 几何学
作者
Jemin Kim,Changyoon Lee,Sung-Chul Choi,Da-In Sung,Jeonga Seo,Yun Na Lee,Joo Hee Lee,Eun Jin Han,Ah Young Kim,Hyun Suk Park,Hye Jeong Jung,Jong Hoon Kim,Ju Hee Lee
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:180: 105266-105266 被引量:5
标识
DOI:10.1016/j.ijmedinf.2023.105266
摘要

Precise categorization of pressure injury (PI) stages is critical in determining the appropriate treatment for wound care. However, the expertise necessary for PI staging is frequently unavailable in residential care settings. This study aimed to develop a convolutional neural network (CNN) model for classifying PIs and investigate whether its implementation can allow physicians to make better decisions for PI staging. Using 3,098 clinical images (2,614 and 484 from internal and external datasets, respectively), a CNN was trained and validated to classify PIs and other related dermatoses. A two-part survey was conducted with 24 dermatology residents, ward nurses, and medical students to determine whether the implementation of the CNN improved initial PI classification decisions. The top-1 accuracy of the model was 0.793 (95% confidence interval [CI], 0.778–0.808) and 0.717 (95% CI, 0.676–0.758) over the internal and external testing sets, respectively. The accuracy of PI staging among participants was 0.501 (95% CI, 0.487–0.515) in Part I, improving by 17.1% to 0.672 (95% CI, 0.660–0.684) in Part II. Furthermore, the concordance between participants increased significantly with the use of the CNN model, with Fleiss’ κ of 0.414 (95% CI, 0.410–0.417) and 0.641 (95% CI, 0.638–0.644) in Parts I and II, respectively. The proposed CNN model can help classify PIs and relevant dermatoses. In addition, augmented decision-making can improve consultation accuracy while ensuring concordance between the clinical decisions made by a diverse group of health professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动沅完成签到,获得积分10
刚刚
1秒前
1秒前
MUWENYING完成签到,获得积分10
2秒前
cz完成签到 ,获得积分10
2秒前
生动友容发布了新的文献求助10
3秒前
3秒前
李健的小迷弟应助夕诙采纳,获得10
4秒前
zyw0532发布了新的文献求助100
4秒前
Drwang完成签到,获得积分10
4秒前
溜溜发布了新的文献求助10
4秒前
汉堡包应助时尚又蓝采纳,获得10
4秒前
NexusExplorer应助JIAYIWANG采纳,获得30
5秒前
shelemi发布了新的文献求助10
5秒前
5秒前
5秒前
活力的寻云完成签到,获得积分10
6秒前
6秒前
微笑的曼容完成签到,获得积分10
6秒前
星辰大海应助NeuroYan采纳,获得10
7秒前
yangican完成签到,获得积分10
8秒前
CipherSage应助Frost采纳,获得10
8秒前
锦鲤完成签到 ,获得积分10
8秒前
9秒前
kingwill举报酒温书生求助涉嫌违规
9秒前
9秒前
9秒前
zhuhaiting发布了新的文献求助10
10秒前
TIAN发布了新的文献求助10
10秒前
李健应助成就的馒头采纳,获得10
11秒前
浮游应助yys采纳,获得10
11秒前
科研通AI5应助神勇的砖头采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
华仔应助生动友容采纳,获得10
12秒前
13秒前
13秒前
小啦啦3082完成签到 ,获得积分10
14秒前
道听途说完成签到 ,获得积分10
14秒前
iboy完成签到,获得积分10
14秒前
时尚又蓝发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602181
求助须知:如何正确求助?哪些是违规求助? 4011609
关于积分的说明 12419641
捐赠科研通 3691701
什么是DOI,文献DOI怎么找? 2035278
邀请新用户注册赠送积分活动 1068494
科研通“疑难数据库(出版商)”最低求助积分说明 953025