Augmented Decision-Making in wound Care: Evaluating the clinical utility of a Deep-Learning model for pressure injury staging

一致性 分类 卷积神经网络 医学 置信区间 人工智能 临床决策支持系统 临床决策 病人护理 卡帕 机器学习 医学物理学 计算机科学 决策支持系统 重症监护医学 内科学 护理部 数学 几何学
作者
Jemin Kim,Changyoon Lee,Sung-Chul Choi,Da-In Sung,Jeonga Seo,Yun Na Lee,Joo Hee Lee,Eun Jin Han,Ah Young Kim,Hyun Suk Park,Hye Jeong Jung,Jong Hoon Kim,Ju Hee Lee
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:180: 105266-105266 被引量:5
标识
DOI:10.1016/j.ijmedinf.2023.105266
摘要

Precise categorization of pressure injury (PI) stages is critical in determining the appropriate treatment for wound care. However, the expertise necessary for PI staging is frequently unavailable in residential care settings. This study aimed to develop a convolutional neural network (CNN) model for classifying PIs and investigate whether its implementation can allow physicians to make better decisions for PI staging. Using 3,098 clinical images (2,614 and 484 from internal and external datasets, respectively), a CNN was trained and validated to classify PIs and other related dermatoses. A two-part survey was conducted with 24 dermatology residents, ward nurses, and medical students to determine whether the implementation of the CNN improved initial PI classification decisions. The top-1 accuracy of the model was 0.793 (95% confidence interval [CI], 0.778–0.808) and 0.717 (95% CI, 0.676–0.758) over the internal and external testing sets, respectively. The accuracy of PI staging among participants was 0.501 (95% CI, 0.487–0.515) in Part I, improving by 17.1% to 0.672 (95% CI, 0.660–0.684) in Part II. Furthermore, the concordance between participants increased significantly with the use of the CNN model, with Fleiss’ κ of 0.414 (95% CI, 0.410–0.417) and 0.641 (95% CI, 0.638–0.644) in Parts I and II, respectively. The proposed CNN model can help classify PIs and relevant dermatoses. In addition, augmented decision-making can improve consultation accuracy while ensuring concordance between the clinical decisions made by a diverse group of health professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
狂野东蒽发布了新的文献求助10
2秒前
2秒前
Echo完成签到,获得积分10
2秒前
小吃货发布了新的文献求助10
2秒前
2秒前
生菜发布了新的文献求助10
3秒前
可爱的函函应助渊思采纳,获得10
3秒前
3秒前
surain发布了新的文献求助10
4秒前
邝边边发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助dongsheng采纳,获得10
4秒前
4秒前
lijin发布了新的文献求助30
4秒前
H1完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
摸鱼学原理完成签到 ,获得积分10
5秒前
情怀应助冬天该很好采纳,获得10
5秒前
喵了个咪发布了新的文献求助10
5秒前
6秒前
思源应助TURIN采纳,获得10
7秒前
hss完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
上官若男应助Echo采纳,获得10
8秒前
9秒前
xfwang发布了新的文献求助10
9秒前
xyl发布了新的文献求助10
9秒前
小蘑菇应助宁静致远采纳,获得10
9秒前
思源应助大观天下采纳,获得30
9秒前
www发布了新的文献求助10
10秒前
科研愤青发布了新的文献求助10
10秒前
哈哈发布了新的文献求助10
11秒前
多多完成签到,获得积分10
11秒前
11秒前
bluet完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794