Augmented Decision-Making in wound Care: Evaluating the clinical utility of a Deep-Learning model for pressure injury staging

一致性 分类 卷积神经网络 医学 置信区间 人工智能 临床决策支持系统 临床决策 病人护理 卡帕 机器学习 医学物理学 计算机科学 决策支持系统 重症监护医学 内科学 护理部 数学 几何学
作者
Jemin Kim,Changyoon Lee,Sung-Chul Choi,Da-In Sung,Jeonga Seo,Yun Na Lee,Joo Hee Lee,Eun Jin Han,Ah Young Kim,Hyun Suk Park,Hye Jeong Jung,Jong Hoon Kim,Ju Hee Lee
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:180: 105266-105266 被引量:5
标识
DOI:10.1016/j.ijmedinf.2023.105266
摘要

Precise categorization of pressure injury (PI) stages is critical in determining the appropriate treatment for wound care. However, the expertise necessary for PI staging is frequently unavailable in residential care settings. This study aimed to develop a convolutional neural network (CNN) model for classifying PIs and investigate whether its implementation can allow physicians to make better decisions for PI staging. Using 3,098 clinical images (2,614 and 484 from internal and external datasets, respectively), a CNN was trained and validated to classify PIs and other related dermatoses. A two-part survey was conducted with 24 dermatology residents, ward nurses, and medical students to determine whether the implementation of the CNN improved initial PI classification decisions. The top-1 accuracy of the model was 0.793 (95% confidence interval [CI], 0.778–0.808) and 0.717 (95% CI, 0.676–0.758) over the internal and external testing sets, respectively. The accuracy of PI staging among participants was 0.501 (95% CI, 0.487–0.515) in Part I, improving by 17.1% to 0.672 (95% CI, 0.660–0.684) in Part II. Furthermore, the concordance between participants increased significantly with the use of the CNN model, with Fleiss’ κ of 0.414 (95% CI, 0.410–0.417) and 0.641 (95% CI, 0.638–0.644) in Parts I and II, respectively. The proposed CNN model can help classify PIs and relevant dermatoses. In addition, augmented decision-making can improve consultation accuracy while ensuring concordance between the clinical decisions made by a diverse group of health professionals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
1秒前
伶俐芷珊发布了新的文献求助30
1秒前
2秒前
绿色心情发布了新的文献求助10
3秒前
浮游应助zhanghaowei采纳,获得10
3秒前
董子钰发布了新的文献求助10
4秒前
lele发布了新的文献求助10
5秒前
5秒前
5秒前
momo发布了新的文献求助10
6秒前
默mo发布了新的文献求助20
6秒前
7秒前
甜蜜凉面发布了新的文献求助10
7秒前
7秒前
zz完成签到,获得积分10
7秒前
8秒前
勤恳的浩阑完成签到,获得积分10
9秒前
zmj发布了新的文献求助10
9秒前
9秒前
Hello应助Christy采纳,获得10
11秒前
小二郎应助lele采纳,获得10
11秒前
hehehe发布了新的文献求助10
12秒前
李雪松完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
16秒前
XieNan完成签到 ,获得积分10
17秒前
科研通AI5应助晨风韵雨采纳,获得30
17秒前
yannnis完成签到,获得积分10
18秒前
18秒前
Crisis发布了新的文献求助10
19秒前
科研通AI2S应助小芦铃采纳,获得10
19秒前
科研皇完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
21秒前
yannnis发布了新的文献求助10
21秒前
科研通AI6应助safari采纳,获得10
23秒前
wanci应助罗一采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5051214
求助须知:如何正确求助?哪些是违规求助? 4278658
关于积分的说明 13337209
捐赠科研通 4093835
什么是DOI,文献DOI怎么找? 2240552
邀请新用户注册赠送积分活动 1247109
关于科研通互助平台的介绍 1176197