A data driven recurrent neural network approach for reproduction of variable visuo-haptic force feedback in surgical tool insertion

计算机科学 循环神经网络 触觉技术 降维 人工智能 均方误差 职位(财务) 还原(数学) 字错误率 人工神经网络 模拟 数学 统计 几何学 财务 经济
作者
P. V. Sabique,P. Ganesh,K. Sridharan
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 122221-122221 被引量:3
标识
DOI:10.1016/j.eswa.2023.122221
摘要

The surge of interest in haptic technology is due to inspirational advances in the robotic-assisted surgical system, where haptics has the role of delivering tactile feedback for enhancement of user experience. This work presents a Long Short Term Memory (LSTM) based Recurrent Neural Network (RNN) framework with Dimensionality Reduction (DR) and a Cyclical Learning Rate (CLR) optimizer for reproducing variable forces produced in different skin layers during the performance of various surgical procedures. This paper deals with online estimation of the force parameters of original porcine skin, and the same has been tested in real-time and Visuo-haptic environment for training surgeons. The proposed model has processed both spatial and temporal information acquired from three different dataset, surgical tools and manipulator. The results of proposed framework RNN-LSTM + DR + CLR show a 9.23 % & 3.8 % improvement in force prediction accuracy in real-time and 7.11 % & 1.68 % improvement in Visuo-haptic simulation compared to the RNN and RNN-LSTM prediction frameworks, respectively. The sensitivity analysis shows that torque (97.62 %), position (94.54 %), deformation (93.20 %), stiffness (89.23 %), tool diameter (87.25 %), rotation (63.21 %), and orientation (62.56 %) features have a respective impact on the predicted force. The performance of RNN-LSTM was better when the network was optimized with dimensionality reduction, loss function as Root Mean Square Error (RMSE), and learning rate as Cyclical Learning Rate (CLR). The research outcomes show the effectiveness of the method for estimating the force on the surface and internal layers of the skin. Also, the method has applications in real-time surgical tasks and surgeon training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ENDER123发布了新的文献求助10
2秒前
斯人发布了新的文献求助10
2秒前
2秒前
童年的回忆klwqqt完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
子车茗应助Seyon采纳,获得20
4秒前
我是老大应助无辜善愁采纳,获得10
5秒前
曾经阁发布了新的文献求助10
7秒前
7秒前
jingmishensi发布了新的文献求助10
7秒前
8秒前
halophiles发布了新的文献求助10
8秒前
科视完成签到,获得积分10
8秒前
1Aaa发布了新的文献求助10
8秒前
斯人完成签到,获得积分10
9秒前
9秒前
ccc完成签到 ,获得积分10
10秒前
jane123发布了新的文献求助10
10秒前
小巧南露完成签到,获得积分20
10秒前
mouse_pear发布了新的文献求助10
10秒前
11秒前
小巧南露发布了新的文献求助10
13秒前
陈敏发布了新的文献求助10
13秒前
kejun发布了新的文献求助30
13秒前
哈哈哈完成签到 ,获得积分10
13秒前
斯文败类应助jingmishensi采纳,获得10
13秒前
混子完成签到,获得积分10
14秒前
小雨点完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
小田关注了科研通微信公众号
16秒前
SciGPT应助中心湖小海棠采纳,获得30
17秒前
朱小小发布了新的文献求助10
20秒前
21秒前
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313419
求助须知:如何正确求助?哪些是违规求助? 2945813
关于积分的说明 8527122
捐赠科研通 2621489
什么是DOI,文献DOI怎么找? 1433679
科研通“疑难数据库(出版商)”最低求助积分说明 665080
邀请新用户注册赠送积分活动 650600