Classification of high-risk depressed mood groups in cancer patients based on Health Ecology Model

心情 癌症 萧条(经济学) 临床心理学 医学 逻辑回归 纵向研究 精神科 心理学 内科学 病理 宏观经济学 经济
作者
Youhua Lu,Yuantao Qi,Jin Du,Yan Liu,Shihong Dong,Huaiju Ge,Yu Yuan,Jialin Wang,Nan Zhang,Bingxiang Wang,Guifeng Ma
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:347: 327-334 被引量:3
标识
DOI:10.1016/j.jad.2023.11.061
摘要

Depressed mood affects a significant number of patients with cancer, and can impair their quality of life and interfere with successful treatment. Our study aims to create a predictive model for identifying high-risk groups of depressed mood in cancer patients, offering a theoretical support for preventing depressed mood in these individuals. The China Health and Retirement Longitudinal Study (CHARLS) provided the data for this research, which used CES-D as a tool to identify individuals with depressed mood. Influencing factors of depressed mood in cancer patients was analyzed using a binary logistic regression model. Using the Harvard Cancer Index, we classified the high-risk patients for depressed mood. In present study, 52.96 % of cancer patients met criteria for depressed mood based on the CES-D. Significant correlations were found between depressed mood and factors such as gender, self-rated health, sleep duration, exercise, satisfaction with family, residence, education, life satisfaction, and medical insurance. Utilizing the Harvard Cancer Index, we classified patients into five risk levels for depressed mood, revealing a significant variation in the number of depressive patients across these levels (x2=99.82, P < 0.05). Notably, the incidence of depressed mood increased with the risk level among cancer patients (x2=103.40, P < 0.05). Lack of data on tumor typing and subgroups makes it unlikely to explore the specifics of depressed mood in patients with various types of cancer. The determinants of depressed mood in cancer patients are multi-dimensional. The Harvard Cancer Index may be helpful in identifying high-risk populations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
vv发布了新的文献求助10
刚刚
wyl完成签到,获得积分10
刚刚
秘密发布了新的文献求助20
1秒前
1秒前
敢敢完成签到,获得积分10
1秒前
口口完成签到 ,获得积分10
1秒前
沙河口大长硬完成签到,获得积分10
1秒前
冬青完成签到,获得积分10
2秒前
2秒前
2秒前
江峰完成签到,获得积分10
2秒前
2秒前
qiaqiaqia完成签到,获得积分10
3秒前
vovoking完成签到 ,获得积分10
3秒前
八二力完成签到 ,获得积分10
4秒前
锋回露转123完成签到,获得积分10
4秒前
4秒前
兔兔完成签到,获得积分10
4秒前
HY完成签到,获得积分10
5秒前
十五亿完成签到,获得积分10
5秒前
俏皮乐天发布了新的文献求助10
5秒前
keyanwang完成签到 ,获得积分10
6秒前
Scueen完成签到,获得积分10
6秒前
6秒前
secret完成签到,获得积分20
6秒前
LP发布了新的文献求助10
7秒前
wy.he应助呆呆采纳,获得10
7秒前
亚克西发布了新的文献求助10
7秒前
兔兔发布了新的文献求助10
7秒前
重要忆丹完成签到,获得积分20
8秒前
ding应助卞绍奇采纳,获得10
9秒前
陈预立完成签到,获得积分10
9秒前
你仍是我完成签到,获得积分20
10秒前
10秒前
xiaoxia发布了新的文献求助10
10秒前
十五亿发布了新的文献求助10
10秒前
11秒前
11秒前
YOLO发布了新的文献求助10
11秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3245070
求助须知:如何正确求助?哪些是违规求助? 2888780
关于积分的说明 8255477
捐赠科研通 2557124
什么是DOI,文献DOI怎么找? 1385882
科研通“疑难数据库(出版商)”最低求助积分说明 650248
邀请新用户注册赠送积分活动 626457