CSwinDoubleU-Net: A double U-shaped network combined with convolution and Swin Transformer for colorectal polyp segmentation

计算机科学 人工智能 分割 卷积神经网络 模式识别(心理学) 特征(语言学) 计算机视觉 哲学 语言学
作者
Yuanjie Lin,Xiaoxiang Han,Keyan Chen,Weikun Zhang,Qiaohong Liu
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:89: 105749-105749 被引量:8
标识
DOI:10.1016/j.bspc.2023.105749
摘要

The early detection of polyps from colonoscopy can reduce the risk of colorectal cancer development and give timely treatment. Accurate polyp segmentation during colonoscopy examinations can help clinicians locate the polyps which is of great significance in the clinical prevention of colorectal cancer. However, due to large variations in terms of size, color, texture, and morphology of polyps, the similarity between the polyp lesions and their background, the variations of illumination, motion blur, low-contrast areas, intestinal contents during image acquisitions, precisely polyp segmentation is still an open issue. To overcome the challenges above, a new double U-shaped image segmentation network combining convolution structure and Shifted Windows (Swin) Transformer, namely CSwinDoubleU-Net, is proposed in this paper. The developed CSwinDoubleU-Net consists of two U-shaped encode-decode structures associated with a pure CNN-based structure and a pure Transformer-based one, and a feature fusion module that interacts with the two U-shaped parts. The first U-shaped codecs network utilizes the multi-convolution layers to extract the local feature information and the coordinate attention module in each skip connection to effectively reduce the loss of spatial information and obtain the accurate position information of the encoded features. Next, the second U-shaped codecs network uses the Swin Transformer layers with the sliding window to extract global feature information further. At last, a convolutional feature and self-attention feature fusion module (CSFFM) is designed to deeply fuse the local convolutional features extracted from the first U-shape structure and the global self-Attention features extracted from the second U-shape structure. The obtained multi-category and multi-dimensional fused feature information can help to recover the boundary features of polyps. Extensive experiments are conducted to validate the proposed CSwinDoubleU-Net on five publicly available datasets, including CVC-ClinicDB, Kvasir, CVC-ColonDB, CVC-T, and ETIS-Larib. The results show that the proposed model can outperform some state-of-the-art methods and achieve high segmentation performance for polyp images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘应助寒冷胡萝卜采纳,获得10
刚刚
一一发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
jiajiajiajia完成签到,获得积分20
2秒前
wujingshuai完成签到,获得积分10
2秒前
5秒前
丘比特应助祁曼岚采纳,获得10
5秒前
5秒前
5秒前
jiajiajiajia发布了新的文献求助10
6秒前
LCW07发布了新的文献求助10
6秒前
小笼包发布了新的文献求助30
7秒前
peng完成签到,获得积分10
7秒前
初若完成签到,获得积分10
8秒前
dabaopinkman发布了新的文献求助30
8秒前
9秒前
hhc发布了新的文献求助10
9秒前
火星上的谷菱完成签到,获得积分10
10秒前
SYLH应助wangz采纳,获得10
11秒前
12秒前
12秒前
初若发布了新的文献求助10
12秒前
wangsiyuan完成签到 ,获得积分10
13秒前
13秒前
小马甲应助Dyson采纳,获得10
15秒前
英姑应助陈HIAHIA采纳,获得10
15秒前
hhc完成签到,获得积分10
16秒前
16秒前
聪明寄容发布了新的文献求助10
17秒前
祁曼岚发布了新的文献求助10
18秒前
韧战发布了新的文献求助30
19秒前
19秒前
Orange应助含蓄戾采纳,获得10
20秒前
cyrong发布了新的文献求助10
20秒前
21秒前
所所应助明明勇勇乐采纳,获得10
21秒前
iorpi发布了新的文献求助10
21秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465403
求助须知:如何正确求助?哪些是违规求助? 3058562
关于积分的说明 9062014
捐赠科研通 2748872
什么是DOI,文献DOI怎么找? 1508182
科研通“疑难数据库(出版商)”最低求助积分说明 696856
邀请新用户注册赠送积分活动 696483