已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Serum lipidomic profiling for liver cancer screening using surface-assisted laser desorption ionization MS and machine learning

化学 色谱法 脂类学 接收机工作特性 肝癌 质谱法 表面增强激光解吸/电离 生物化学 癌症 内科学 串联质谱法 医学 蛋白质质谱法
作者
Qiong Wu,Jing Yu,Mingjin Zhang,Yinran Xiong,Lijia Zhu,Bo Wei,Ting Wu,Yiping Du
出处
期刊:Talanta [Elsevier]
卷期号:268: 125371-125371 被引量:6
标识
DOI:10.1016/j.talanta.2023.125371
摘要

The liver is a major organ in metabolism, and alterations in serum lipids are associated with liver disorders. Here, a rapid, easy, and reliable screening technique based on lipidomic profiling was developed using machine learning and surface-assisted laser desorption ionization mass spectrometry (SALDI MS) for liver cancer diagnosis. A graphitized carbon matrix (GCM) was created for serum lipid profiling in SALDI MS and demonstrated a better performance for neutral lipids analysis than conventional organic matrices. The fingerprint of serum lipids, including triacylglycerols (TGs), diacylglycerols (DGs), cholesteryl esters (CEs), glycerophospholipids (GPs), and other components, could be directly obtained by GCM-assisted LDI MS without extraction. Five machine learning methods were applied to distinguish liver cancer (LC) patients from healthy controls (HC) and chronic hepatitis B (CHB) patients. The best diagnostic performance was attained by linear discriminant analysis (LDA), which has a confusion matrix accuracy of 98.3 %. The receiver operating characteristic (ROC) curve for liver cancer exhibited an area under the curve (AUC) of 0.99, indicating a high degree of prediction accuracy. One-way ANOVA analysis revealed that numerous TGs were down-regulated in LC group. The results demonstrated the viability of GCM-assisted LDI MS as a valuable diagnostic tool for liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柔弱嵩发布了新的文献求助10
刚刚
1秒前
miki完成签到,获得积分10
1秒前
谢大喵发布了新的文献求助10
1秒前
BareBear应助kris采纳,获得10
2秒前
Eatanicecube完成签到,获得积分10
4秒前
4秒前
温暖的聪展完成签到 ,获得积分10
5秒前
络巫琥发布了新的文献求助10
7秒前
7秒前
8秒前
梅梅也发布了新的文献求助30
8秒前
小七完成签到,获得积分10
8秒前
科研通AI2S应助陈cxz采纳,获得10
9秒前
优美的小夏完成签到,获得积分10
9秒前
10秒前
12秒前
酷炫的冰淇淋完成签到,获得积分10
13秒前
Lucas应助知性的采珊采纳,获得10
14秒前
小杭76应助柔弱嵩采纳,获得10
16秒前
18秒前
18秒前
guojingjing发布了新的文献求助10
18秒前
安小敏发布了新的文献求助10
19秒前
小郑不睡觉完成签到 ,获得积分10
19秒前
20秒前
21秒前
Demon应助酷炫的冰淇淋采纳,获得10
21秒前
22秒前
芸珂发布了新的文献求助10
22秒前
23秒前
26秒前
充电宝应助liuynnn采纳,获得30
26秒前
坦率灵槐应助ppzz1220采纳,获得10
26秒前
29秒前
29秒前
梅梅也完成签到,获得积分10
30秒前
酷波er应助Serrinixia采纳,获得10
32秒前
32秒前
funnyelephant完成签到 ,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300903
求助须知:如何正确求助?哪些是违规求助? 4448717
关于积分的说明 13846704
捐赠科研通 4334501
什么是DOI,文献DOI怎么找? 2379689
邀请新用户注册赠送积分活动 1374783
关于科研通互助平台的介绍 1340460