Serum lipidomic profiling for liver cancer screening using surface-assisted laser desorption ionization MS and machine learning

化学 色谱法 脂类学 接收机工作特性 肝癌 质谱法 表面增强激光解吸/电离 生物化学 癌症 内科学 串联质谱法 医学 蛋白质质谱法
作者
Qiong Wu,Jing Yu,Mingjin Zhang,Yinran Xiong,Lijia Zhu,Bo Wei,Ting Wu,Yiping Du
出处
期刊:Talanta [Elsevier BV]
卷期号:268: 125371-125371 被引量:6
标识
DOI:10.1016/j.talanta.2023.125371
摘要

The liver is a major organ in metabolism, and alterations in serum lipids are associated with liver disorders. Here, a rapid, easy, and reliable screening technique based on lipidomic profiling was developed using machine learning and surface-assisted laser desorption ionization mass spectrometry (SALDI MS) for liver cancer diagnosis. A graphitized carbon matrix (GCM) was created for serum lipid profiling in SALDI MS and demonstrated a better performance for neutral lipids analysis than conventional organic matrices. The fingerprint of serum lipids, including triacylglycerols (TGs), diacylglycerols (DGs), cholesteryl esters (CEs), glycerophospholipids (GPs), and other components, could be directly obtained by GCM-assisted LDI MS without extraction. Five machine learning methods were applied to distinguish liver cancer (LC) patients from healthy controls (HC) and chronic hepatitis B (CHB) patients. The best diagnostic performance was attained by linear discriminant analysis (LDA), which has a confusion matrix accuracy of 98.3 %. The receiver operating characteristic (ROC) curve for liver cancer exhibited an area under the curve (AUC) of 0.99, indicating a high degree of prediction accuracy. One-way ANOVA analysis revealed that numerous TGs were down-regulated in LC group. The results demonstrated the viability of GCM-assisted LDI MS as a valuable diagnostic tool for liver cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xly发布了新的文献求助10
2秒前
阚曦发布了新的文献求助10
3秒前
望断椿岁发布了新的文献求助20
3秒前
4秒前
4秒前
Bear完成签到 ,获得积分10
6秒前
QF发布了新的文献求助10
7秒前
温柔寒梅完成签到 ,获得积分10
8秒前
追寻雨完成签到,获得积分10
8秒前
9秒前
WWshu应助豆豆采纳,获得10
11秒前
11秒前
共享精神应助spc采纳,获得10
11秒前
叶子完成签到,获得积分10
12秒前
核桃应助secret采纳,获得10
12秒前
等待的若云完成签到,获得积分10
13秒前
归尘发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
希捷方向发布了新的文献求助10
15秒前
16秒前
英姑应助现代雪晴采纳,获得10
16秒前
xiongdi521完成签到,获得积分10
16秒前
17秒前
xiha西希完成签到,获得积分10
19秒前
19秒前
满意的中心完成签到,获得积分10
20秒前
20秒前
钟sir发布了新的文献求助30
20秒前
小马甲应助mzone采纳,获得10
20秒前
23秒前
巴基斯坦农民完成签到,获得积分20
24秒前
24秒前
大方弘文发布了新的文献求助10
24秒前
Quentin9998发布了新的文献求助10
24秒前
24秒前
通莲完成签到,获得积分10
24秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371