单宁酸
生物相容性
白藜芦醇
药物输送
癌细胞
细胞凋亡
MTT法
活力测定
细胞
癌症
药理学
癌症研究
生物化学
化学
医学
有机化学
内科学
作者
Xueqiang Sun,Fuxin Li,Lingyan Yuan,Zhitong Bing,Xun Li,Kehu Yang
摘要
Abstract Resveratrol (Res) is known for its potential in treating various types of cancers, with a particular advantage of causing minimal toxic side effects. However, its clinical application is constrained by challenges such as poor bioavailability, low water solubility, and chemical instability in neutral and alkaline environments. In light of these limitations, we have developed a pH‐responsive drug delivery nanoplatform, Res@ZIF‐8/TA NPs, which exhibits good biocompatibility and shows promise for in vitro cancer therapy. Benefiting from the mild reaction conditions provided by zeolitic imidazolate frameworks (ZIFs), a “one‐pot method” was used for drug synthesis and loading, resulting in a satisfactory loading capacity. Notably, Res@ZIF‐8/TA NPs respond to acidic environments, leading to an improved drug release profile with a controlled release effect. Our cell‐based experiments indicated that tannic acid (TA) modification enhances the biocompatibility of ZIFs. 3‐(4,5)‐dimethylthiahiazo (‐z‐y1)‐3,5‐di‐ phenytetrazoliumromide (MTT assay), Hoechst 33342/PI staining, cell scratch assay, Transwell and Reverse Transcription quantitative PCR (RT‐qPCR) assays further demonstrated that Res@ZIF‐8/TA NPs inhibited colon cancer cell migration and invasion, and promoted apoptosis of colon cancer cells, suggesting a therapeutic potential and demonstrating anti‐cancer properties. In conclusion, the Res@ZIF‐8/TA NPs pH‐responsive drug delivery systems we developed may offer a promising avenue for cancer therapy. By addressing some of the challenges associated with Res‐based treatments, this system could contribute to advancements in cancer therapeutics.
科研通智能强力驱动
Strongly Powered by AbleSci AI