Construction of a risk prediction model for detecting postintensive care syndrome—mental disorders

接收机工作特性 医学 列线图 逻辑回归 谵妄 焦虑 萧条(经济学) 共病 内科学 曲线下面积 急诊医学 精神科 宏观经济学 经济
作者
Faying Wang,Jingshu Li,Yuying Fan,Xiaona Qi
出处
期刊:Nursing in critical care [Wiley]
卷期号:29 (4): 646-660 被引量:6
标识
DOI:10.1111/nicc.12978
摘要

Abstract Background Postintensive care syndrome (PICS) has adverse multidimensional effects on nearly half of the patients discharged from ICU. Mental disorders such as anxiety, depression and post‐traumatic stress disorder (PTSD) are the most common psychological problems for patients with PICS with harmful complications. However, developing prediction models for mental disorders in post‐ICU patients is an understudied problem. Aims To explore the risk factors of PICS mental disorders, establish the prediction model and verify its prediction efficiency. Study Design In this cohort study, data were collected from 393 patients hospitalized in the ICU of a tertiary hospital from April to September 2022. Participants were randomly assigned to modelling and validation groups using a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis was performed to select the predictors, multiple logistic regression analysis was used to establish the risk prediction model, and a dynamic nomogram was developed. The Hosmer–Lemeshow (HL) test was performed to determine the model's goodness of fit. The area under the receiver operating characteristic (ROC) curve was used to evaluate the model's prediction efficiency. Results The risk factors of mental disorders were Sepsis‐related organ failure assessment (SOFA) score, Charlson comorbidity index (CCI), delirium duration, ICU depression score and ICU sleep score. The HL test revealed that p = .249, the area under the ROC curve = 0.860, and the corresponding sensitivity and specificity were 84.8% and 71.0%, respectively. The area under the ROC curve of the verification group was 0.848. A mental disorders dynamic nomogram for post‐ICU patients was developed based on the regression model. Conclusions The prediction model provides a reference for clinically screening patients at high risk of developing post‐ICU mental disorders, to enable the implementation of timely preventive management measures. Relevance to Clinical Practice The dynamic nomogram can be used to systematically monitor various factors associated with mental disorders. Furthermore, nurses need to develop and apply accurate nursing interventions that consider all relevant variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘洋葱完成签到 ,获得积分10
刚刚
1秒前
x5kyi完成签到,获得积分10
2秒前
2秒前
2秒前
dcc完成签到,获得积分10
2秒前
脑洞疼应助钱多多采纳,获得10
3秒前
3秒前
4秒前
6秒前
今后应助碎米花采纳,获得10
7秒前
Cilvord发布了新的文献求助10
7秒前
8秒前
gean发布了新的文献求助10
8秒前
困困鱼发布了新的文献求助50
9秒前
科研通AI6应助明理的冷荷采纳,获得10
10秒前
10秒前
10秒前
11秒前
十四行诗完成签到 ,获得积分10
12秒前
研ZZ完成签到,获得积分10
12秒前
gean完成签到,获得积分10
13秒前
慈祥的花瓣完成签到,获得积分10
13秒前
13秒前
hey完成签到,获得积分10
13秒前
111发布了新的文献求助10
14秒前
wipmzxu发布了新的文献求助200
17秒前
Ya完成签到 ,获得积分10
17秒前
17秒前
18秒前
19秒前
ll发布了新的文献求助10
20秒前
hubert发布了新的文献求助30
20秒前
21秒前
斯文败类应助yucj采纳,获得10
22秒前
小蘑菇应助小王不爱上班采纳,获得10
22秒前
饼干肥熊完成签到 ,获得积分10
22秒前
MrChew完成签到 ,获得积分10
23秒前
24秒前
25秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379208
求助须知:如何正确求助?哪些是违规求助? 4503684
关于积分的说明 14016154
捐赠科研通 4412373
什么是DOI,文献DOI怎么找? 2423776
邀请新用户注册赠送积分活动 1416652
关于科研通互助平台的介绍 1394197