亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blockchain-Empowered Federated Learning Through Model and Feature Calibration

计算机科学 分布式计算 联合学习 过程(计算) 人工智能 边缘计算 边缘设备 独立同分布随机变量 机器学习 GSM演进的增强数据速率 云计算 统计 数学 随机变量 操作系统
作者
Qianlong Wang,Weixian Liao,Yifan Guo,Michael P. McGuire,Wei Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5770-5780 被引量:4
标识
DOI:10.1109/jiot.2023.3311967
摘要

With the proliferation of computationally powerful edge devices, edge computing has been widely adopted for wide-ranging computational tasks. Among these, edge artificial intelligence (AI) has become a new trend, allowing local devices to work cooperatively and build deep learning models. Federated learning is one of the representative frameworks in distributed machine learning paradigms. However, there are several major concerns with existing federated learning paradigms. Existing distributed frameworks rely on a central server to coordinate the computing process, where such a central node may raise security concerns. Federated learning also relies on several assumptions/requirements, e.g., independent and identically distributed (i.i.d.) data and model homogeneity. Since more and more edge devices are able to train lightweight models with local data, such models are normally heterogeneous. To tackle these challenges, in this paper, we develop a blockchain-empowered federated learning framework that enables learning in a fully decentralized manner while taking model heterogeneity and data heterogeneity into account. In particular, a federated learning framework with a heterogeneous calibration process, i.e., Model and Feature Calibration (FL-MFC), is developed to enable collaboration among heterogeneous models. We further design a two-level mining process using blockchain to enable the secure decentralized learning process. Experimental results show that our proposed system achieves effective learning performance under a fully heterogeneous environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Demi_Ming发布了新的文献求助10
6秒前
Panther完成签到,获得积分10
10秒前
19秒前
SciGPT应助Demi_Ming采纳,获得10
20秒前
123完成签到,获得积分10
22秒前
23秒前
1分钟前
Demi_Ming发布了新的文献求助10
1分钟前
任性的一斩完成签到,获得积分10
1分钟前
Dr_an发布了新的文献求助10
1分钟前
小蘑菇应助科研通管家采纳,获得10
1分钟前
FashionBoy应助Dr_an采纳,获得30
1分钟前
1分钟前
1分钟前
正直的白羊完成签到,获得积分10
2分钟前
2分钟前
啵啵冰发布了新的文献求助30
2分钟前
丘比特应助文静的立诚采纳,获得10
2分钟前
muhum完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
文静的立诚完成签到,获得积分10
3分钟前
彭于晏应助科研通管家采纳,获得10
3分钟前
干饭大王应助巴巴变采纳,获得30
3分钟前
3分钟前
巴巴变完成签到,获得积分10
3分钟前
3分钟前
4分钟前
无花果应助淡然采纳,获得10
4分钟前
4分钟前
4分钟前
shaonianzu完成签到 ,获得积分10
4分钟前
4分钟前
淡然发布了新的文献求助10
4分钟前
budingman发布了新的文献求助30
4分钟前
友好钢笔发布了新的文献求助10
4分钟前
科研通AI2S应助彩色的谷云采纳,获得30
5分钟前
成博应助友好钢笔采纳,获得10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968492
求助须知:如何正确求助?哪些是违规求助? 3513278
关于积分的说明 11167211
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794386
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804638