Blockchain-Empowered Federated Learning Through Model and Feature Calibration

计算机科学 分布式计算 联合学习 过程(计算) 人工智能 边缘计算 边缘设备 独立同分布随机变量 机器学习 GSM演进的增强数据速率 云计算 统计 数学 随机变量 操作系统
作者
Qianlong Wang,Weixian Liao,Yifan Guo,Michael P. McGuire,Wei Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5770-5780 被引量:4
标识
DOI:10.1109/jiot.2023.3311967
摘要

With the proliferation of computationally powerful edge devices, edge computing has been widely adopted for wide-ranging computational tasks. Among these, edge artificial intelligence (AI) has become a new trend, allowing local devices to work cooperatively and build deep learning models. Federated learning is one of the representative frameworks in distributed machine learning paradigms. However, there are several major concerns with existing federated learning paradigms. Existing distributed frameworks rely on a central server to coordinate the computing process, where such a central node may raise security concerns. Federated learning also relies on several assumptions/requirements, e.g., independent and identically distributed (i.i.d.) data and model homogeneity. Since more and more edge devices are able to train lightweight models with local data, such models are normally heterogeneous. To tackle these challenges, in this paper, we develop a blockchain-empowered federated learning framework that enables learning in a fully decentralized manner while taking model heterogeneity and data heterogeneity into account. In particular, a federated learning framework with a heterogeneous calibration process, i.e., Model and Feature Calibration (FL-MFC), is developed to enable collaboration among heterogeneous models. We further design a two-level mining process using blockchain to enable the secure decentralized learning process. Experimental results show that our proposed system achieves effective learning performance under a fully heterogeneous environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
觅越完成签到,获得积分20
4秒前
4秒前
4秒前
科研通AI2S应助xx采纳,获得10
4秒前
7秒前
11秒前
Lu发布了新的文献求助10
11秒前
饭饭完成签到,获得积分10
12秒前
主公过于清纯完成签到,获得积分10
12秒前
13秒前
15秒前
善学以致用应助ppxx采纳,获得10
16秒前
网易乐发布了新的文献求助10
16秒前
17秒前
18秒前
18秒前
serenity完成签到 ,获得积分10
19秒前
万能图书馆应助cccc采纳,获得10
20秒前
luoluo发布了新的文献求助10
22秒前
Zer发布了新的文献求助10
24秒前
希望天下0贩的0应助zhang采纳,获得10
24秒前
binz完成签到,获得积分10
25秒前
Lu完成签到,获得积分10
26秒前
orixero应助贝肯尼采纳,获得10
28秒前
31秒前
32秒前
善学以致用应助故意的驳采纳,获得10
32秒前
Ava应助啊蛋蛋采纳,获得10
33秒前
33秒前
ding应助学医不要停采纳,获得10
34秒前
34秒前
36秒前
zhang发布了新的文献求助10
36秒前
37秒前
冯大夫发布了新的文献求助10
37秒前
38秒前
38秒前
wph发布了新的文献求助30
38秒前
luoluo完成签到,获得积分10
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3352973
求助须知:如何正确求助?哪些是违规求助? 2977782
关于积分的说明 8682043
捐赠科研通 2658903
什么是DOI,文献DOI怎么找? 1455990
科研通“疑难数据库(出版商)”最低求助积分说明 674206
邀请新用户注册赠送积分活动 664884