亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Blockchain-Empowered Federated Learning Through Model and Feature Calibration

计算机科学 分布式计算 联合学习 过程(计算) 人工智能 边缘计算 边缘设备 独立同分布随机变量 机器学习 GSM演进的增强数据速率 云计算 统计 数学 随机变量 操作系统
作者
Qianlong Wang,Weixian Liao,Yifan Guo,Michael P. McGuire,Wei Yu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (4): 5770-5780 被引量:4
标识
DOI:10.1109/jiot.2023.3311967
摘要

With the proliferation of computationally powerful edge devices, edge computing has been widely adopted for wide-ranging computational tasks. Among these, edge artificial intelligence (AI) has become a new trend, allowing local devices to work cooperatively and build deep learning models. Federated learning is one of the representative frameworks in distributed machine learning paradigms. However, there are several major concerns with existing federated learning paradigms. Existing distributed frameworks rely on a central server to coordinate the computing process, where such a central node may raise security concerns. Federated learning also relies on several assumptions/requirements, e.g., independent and identically distributed (i.i.d.) data and model homogeneity. Since more and more edge devices are able to train lightweight models with local data, such models are normally heterogeneous. To tackle these challenges, in this paper, we develop a blockchain-empowered federated learning framework that enables learning in a fully decentralized manner while taking model heterogeneity and data heterogeneity into account. In particular, a federated learning framework with a heterogeneous calibration process, i.e., Model and Feature Calibration (FL-MFC), is developed to enable collaboration among heterogeneous models. We further design a two-level mining process using blockchain to enable the secure decentralized learning process. Experimental results show that our proposed system achieves effective learning performance under a fully heterogeneous environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
UpLiu完成签到 ,获得积分10
3秒前
8秒前
17秒前
Jasper应助维颖采纳,获得10
20秒前
小花小宝和阿飞完成签到 ,获得积分10
25秒前
吴端完成签到,获得积分10
26秒前
贪玩老姆完成签到 ,获得积分10
31秒前
tj完成签到 ,获得积分10
36秒前
39秒前
阳佟水蓉完成签到,获得积分10
43秒前
45秒前
所所应助zhvjdb采纳,获得10
46秒前
47秒前
1分钟前
1分钟前
维颖发布了新的文献求助10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
浮浮世世发布了新的文献求助10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
CipherSage应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
Cast_Lappland发布了新的文献求助10
1分钟前
1分钟前
Cast_Lappland完成签到,获得积分10
1分钟前
早川完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
可爱的函函应助早川采纳,获得10
2分钟前
馍夹菜完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Vivian发布了新的文献求助30
2分钟前
Fox完成签到,获得积分10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430