电解质
硼
材料科学
锂(药物)
腐蚀
无机化学
化学工程
阴极
半电池
相间
电化学
金属
化学
电极
冶金
有机化学
物理化学
内分泌学
工程类
生物
医学
工作电极
遗传学
作者
Hyeokjin Kwon,Hongsin Kim,Jaemin Hwang,Won-Sik Oh,Youngil Roh,Dongseok Shin,Hee‐Tak Kim
出处
期刊:Nature Energy
[Springer Nature]
日期:2023-11-23
卷期号:9 (1): 57-69
被引量:32
标识
DOI:10.1038/s41560-023-01405-6
摘要
Abstract Engineering liquid electrolytes for lithium (Li)-metal electrodes has been used to control the morphology of deposited Li in Li-metal batteries (LMBs). However, the Li corrosion problem remains unresolved, hindering the design of lean electrolytes for practical LMBs, which require the electrolyte/capacity ( E / C ) ratio to be 2 g Ah −1 or lower. Here we report a borate–pyran-based electrolyte to address the chronic Li-corrosion problem. We discovered that the borate–pyran electrolyte transforms large LiF crystallites in the solid–electrolyte interphase into fine crystalline or glassy LiF, which enhances the passivity of the Li/electrolyte interface by minimizing the permeation of electrolyte molecules into the solid–electrolyte interphase. LMBs assembled with the borate–pyran electrolyte, a high-nickel layered oxide cathode (3.83 mAh cm − 2 ) and thin lithium (20 μm) delivered a high initial full-cell-level energy density (>400 Wh kg − 1 ) and operated for 400 cycles with 70% capacity retention at an E / C ratio of 1.92 g Ah − 1 , 350 cycles with 73% capacity retention at 1.24 g Ah − 1 and 200 cycles with 85% retention at 0.96 g Ah − 1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI