A Transfer Learning-Based Adaptive Particle Swarm Optimization for Global Optimization Problem

粒子群优化 多群优化 计算机科学 学习迁移 聚类分析 数学优化 最优化问题 元启发式 匹配(统计) 人工智能 适应性学习 领域(数学分析) 适应性突变 机器学习 遗传算法 算法 数学 数学分析 统计
作者
Xu Yang,Hongru Li
标识
DOI:10.23919/ccc58697.2023.10241003
摘要

Particle swarm optimization (PSO) is a popular evolutionary algorithm and widely used to solve practical engineering problems. However, most of the existing methods search for the optimal solution starting from zero initial information, and do not make use of the historical information obtained when solving similar problems previously. This will cause the method to waste lots of computing resources to a certain extent. Recently, the idea of transfer learning has received widespread attention. Transfer learning is a humanized machine learning method that aims to transfer knowledge from one domain (source domain) to another domain (target domain) so that the target domain can achieve better learning results. Therefore, in this study, the idea of transfer learning is extended to the field of evolutionary optimization, and a transfer learning-based adaptive particle swarm optimization framework is proposed (TAPSO). Firstly, the adaptive clustering model matching strategy (ACMS) is proposed to find the historical problems matching the target problem. In ACMS, density-based clustering strategy and maximum mean discrepancy work together to find historically similar problems for the current problem. Secondly, the adaptive knowledge transfer strategy (AKTS) is used to transfer knowledge from the original problem to the target problem. Finally, the comprehensive learning particle swarm optimization algorithm is embedded into the transfer learning framework proposed in this study. Extensive experiments have confirmed the effectiveness of the proposed transfer learning-based adaptive particle swarm optimization framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
完美世界应助菠萝派采纳,获得10
2秒前
2秒前
郭先森发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
FIN应助欢喜的晓霜采纳,获得10
5秒前
5秒前
猪猪hero应助十一采纳,获得10
6秒前
6秒前
6秒前
现代柠檬完成签到,获得积分10
7秒前
烦人应助momo采纳,获得10
7秒前
7秒前
yang发布了新的文献求助10
8秒前
8秒前
菠萝派发布了新的文献求助10
9秒前
龅牙苏完成签到,获得积分10
10秒前
Claire完成签到 ,获得积分10
11秒前
唐军发布了新的文献求助10
12秒前
现代柠檬发布了新的文献求助10
12秒前
13秒前
刹那的颜色完成签到,获得积分10
13秒前
青青儿完成签到,获得积分10
15秒前
15秒前
17秒前
打打应助Y哦莫哦莫采纳,获得10
18秒前
JamesPei应助查理采纳,获得10
18秒前
juice完成签到 ,获得积分10
18秒前
18秒前
19秒前
木light发布了新的文献求助10
19秒前
踏实的求真完成签到,获得积分10
21秒前
Young lake发布了新的文献求助10
22秒前
达克赛德发布了新的文献求助10
23秒前
文子发布了新的文献求助10
23秒前
李健的小迷弟应助mint采纳,获得10
26秒前
风中以菱完成签到,获得积分10
26秒前
26秒前
别摆烂了完成签到,获得积分10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502276
关于积分的说明 11107024
捐赠科研通 3232788
什么是DOI,文献DOI怎么找? 1787081
邀请新用户注册赠送积分活动 870389
科研通“疑难数据库(出版商)”最低求助积分说明 802011