已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Discrepancy Aware Framework for Robust Anomaly Detection

计算机科学 稳健性(进化) 异常检测 离群值 合成数据 边距(机器学习) 人工智能 机器学习 标记数据 编码(集合论) 解码方法 模式识别(心理学) 算法 生物化学 化学 集合(抽象数据类型) 基因 程序设计语言
作者
Yuxuan Cai,Dingkang Liang,Dongliang Luo,Xinwei He,Xin Yang,Xiang Bai
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.07585
摘要

Defect detection is a critical research area in artificial intelligence. Recently, synthetic data-based self-supervised learning has shown great potential on this task. Although many sophisticated synthesizing strategies exist, little research has been done to investigate the robustness of models when faced with different strategies. In this paper, we focus on this issue and find that existing methods are highly sensitive to them. To alleviate this issue, we present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies across different anomaly detection benchmarks. We hypothesize that the high sensitivity to synthetic data of existing self-supervised methods arises from their heavy reliance on the visual appearance of synthetic data during decoding. In contrast, our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance. To this end, inspired by existing knowledge distillation methods, we employ a teacher-student network, which is trained based on synthesized outliers, to compute the discrepancy map as the cue. Extensive experiments on two challenging datasets prove the robustness of our method. Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance. Code is available at: https://github.com/caiyuxuan1120/DAF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尊敬书本发布了新的文献求助10
1秒前
Zinc完成签到,获得积分10
3秒前
6秒前
顾矜应助祁尒采纳,获得10
8秒前
无私绿兰完成签到 ,获得积分10
9秒前
dssdadadds发布了新的文献求助10
12秒前
一杆长空发布了新的文献求助10
16秒前
16秒前
Zhuo完成签到 ,获得积分10
17秒前
华生发布了新的文献求助10
17秒前
彭于晏应助dssdadadds采纳,获得10
17秒前
curry完成签到 ,获得积分10
19秒前
21秒前
中国人发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
Lucas应助科研通管家采纳,获得10
24秒前
所所应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
打打应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
风清扬应助科研通管家采纳,获得10
24秒前
彭于晏应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
思源应助科研通管家采纳,获得10
24秒前
25秒前
李健应助hhchhcmxhf采纳,获得10
25秒前
25秒前
bkagyin应助月光入梦采纳,获得10
27秒前
难过小懒虫完成签到,获得积分10
27秒前
27秒前
28秒前
Snieno完成签到,获得积分10
28秒前
逆天大脚完成签到,获得积分10
28秒前
29秒前
31秒前
L_93发布了新的文献求助10
32秒前
liuzi发布了新的文献求助10
32秒前
乐乐应助犹豫的铅笔采纳,获得10
33秒前
36秒前
君君发布了新的文献求助10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956731
求助须知:如何正确求助?哪些是违规求助? 3502835
关于积分的说明 11110432
捐赠科研通 3233801
什么是DOI,文献DOI怎么找? 1787571
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802172