Deep radiomics-based fusion model for prediction of bevacizumab treatment response and outcome in patients with colorectal cancer liver metastases: a multicentre cohort study

医学 贝伐单抗 无线电技术 队列 结肠镜检查 结直肠癌 置信区间 回顾性队列研究 内科学 肿瘤科 放射科 癌症 化疗
作者
Shizhao Zhou,Dazhen Sun,Wujian Mao,Yu Liu,Wei Cen,Lechi Ye,Fei Liang,Jiacheng Xu,Hongcheng Shi,Jing Yuan,Lisheng Wang,Wenju Chang
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:65: 102271-102271 被引量:5
标识
DOI:10.1016/j.eclinm.2023.102271
摘要

Summary

Background

Accurate tumour response prediction to targeted therapy allows for personalised conversion therapy for patients with unresectable colorectal cancer liver metastases (CRLM). In this study, we aimed to develop and validate a multi-modal deep learning model to predict the efficacy of bevacizumab in patients with initially unresectable CRLM using baseline PET/CT, clinical data, and colonoscopy biopsy specimens.

Methods

In this multicentre cohort study, we retrospectively collected data of 307 patients with CRLM from the BECOME study (NCT01972490) (Zhongshan Hospital of Fudan University, Shanghai) and two independent Chinese cohorts (internal validation cohort from January 1, 2018 to December 31, 2018 at Zhongshan Hospital of Fudan University; external validation cohort from January 1, 2020 to December 31, 2020 at Zhongshan Hospital—Xiamen, Shanghai, and the First Hospital of Wenzhou Medical University, Wenzhou). The main inclusion criteria were that patients with CRLM had pre-treatment PET/CT images as well as colonoscopy specimens. After extracting PET/CT features with deep neural networks (DNN) and selecting related clinical factors using LASSO analysis, a random forest classifier was built as the Deep Radiomics Bevacizumab efficacy predicting model (DERBY). Furthermore, by combining histopathological biomarkers into DERBY, we established DERBY+. The performance of model was evaluated using area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value.

Findings

DERBY achieved promising performance in predicting bevacizumab sensitivity with an AUC of 0.77 and 95% confidence interval (CI) [0.67–0.87]. After combining histopathological features, we developed DERBY+, which had more robust accuracy for predicting tumour response in external validation cohort (AUC 0.83 and 95% CI [0.75–0.92], sensitivity 80.4%, specificity 76.8%). DERBY+ also had prognostic value: the responders had longer progression-free survival (median progression-free survival: 9.6 vs 6.3 months, p = 0.002) and overall survival (median overall survival: 27.6 vs 18.5 months, p = 0.010) than non-responders.

Interpretation

This multi-modal deep radiomics model, using PET/CT, clinical data and histopathological data, was able to identify patients with bevacizumab-sensitive CRLM, providing a favourable approach for precise patient treatment. To further validate and explore the clinical impact of this work, future prospective studies with larger patient cohorts are warranted.

Funding

The National Natural Science Foundation of China; Fujian Provincial Health Commission Project; Xiamen Science and Technology Agency Program; Clinical Research Plan of SHDC; Shanghai Science and Technology Committee Project; Clinical Research Plan of SHDC; Zhejiang Provincial Natural Science Foundation of China; and National Science Foundation of Xiamen.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
念念发布了新的文献求助10
1秒前
tianugui完成签到,获得积分10
1秒前
赵zhao发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
水本无忧87完成签到,获得积分10
3秒前
3秒前
Akim应助66采纳,获得10
3秒前
風再起時发布了新的文献求助10
4秒前
吴丽玲完成签到,获得积分10
5秒前
xw发布了新的文献求助10
5秒前
小碗完成签到 ,获得积分10
5秒前
杳鸢应助研究僧采纳,获得30
6秒前
千寻发布了新的文献求助10
7秒前
优雅幻灵发布了新的文献求助20
7秒前
Jasper应助Wang采纳,获得10
8秒前
volcano完成签到 ,获得积分10
8秒前
科研完成签到 ,获得积分10
8秒前
HDY完成签到,获得积分10
8秒前
逸飞发布了新的文献求助10
8秒前
9秒前
yevaaaa发布了新的文献求助30
9秒前
qin希望完成签到,获得积分0
10秒前
shen_ting发布了新的文献求助10
10秒前
小蘑菇应助赵zhao采纳,获得10
11秒前
羊踯躅发布了新的文献求助10
11秒前
无花果应助独特绣连采纳,获得10
12秒前
12秒前
Joy完成签到,获得积分10
13秒前
ShuY完成签到,获得积分10
14秒前
他和她的猫完成签到,获得积分10
14秒前
alick完成签到,获得积分10
14秒前
上官若男应助机密塔采纳,获得10
15秒前
15秒前
wangzh发布了新的文献求助10
15秒前
情怀应助SR4采纳,获得10
15秒前
心斋完成签到,获得积分10
15秒前
16秒前
sunburst完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304015
求助须知:如何正确求助?哪些是违规求助? 2938091
关于积分的说明 8486715
捐赠科研通 2612226
什么是DOI,文献DOI怎么找? 1426575
科研通“疑难数据库(出版商)”最低求助积分说明 662719
邀请新用户注册赠送积分活动 647276