TB-MFCC multifuse feature for emergency vehicle sound classification using multistacked CNN – Attention BiLSTM

过度拟合 Mel倒谱 计算机科学 卷积神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工智能 语音识别 均方误差 人工神经网络 音频信号 噪音(视频) 数学 统计 哲学 语音编码 图像(数学) 语言学
作者
T. M. Nithya,P. Dhivya,S. N. Sangeethaa,P. Rajesh Kanna
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:88: 105688-105688 被引量:6
标识
DOI:10.1016/j.bspc.2023.105688
摘要

Vehicles equipped for emergencies like ambulances, fire engines, and police cruisers play a vital role in society by responding quickly to emergencies and helping to prevent loss of life and maintain order. Vehicle sound identification and classification are very important in the cities to identify emergency vehicles easily and to clear the traffic effectively. Convolutional Neural Network plays an important role in the accurate prediction of vehicles during an emergency. The main motive of this paper is to develop a suitable model and algorithms for data augmentation, feature extraction, and classification. The proposed TB-MFCC multifuse feature is comprised of data augmentation and feature extraction. First, in the proposed signal augmentation, each audio signal uses noise injection, stretching, shifting, and pitching separately and this process increases the number of instances in the dataset. The proposed augmentation reduces the overfitting problem in the network. Second, Triangular Bluestein Mel Frequency Cepstral Coefficients (TB-MFCC) are proposed and fused with Zero Crossing Rate (ZCR), Mel-frequency cepstral coefficients (MFCC), Root Mean Square (RMS), Chroma, and Tempogram to extract the exact feature which increases the accuracy and reduces the Mean Squared Error (MSE) of the model during classification. Finally, the proposed Multi-stacked Convolutional Neural Network (MCNN) with Attention-based Bidirectional Long Short Term Memory (A-BiLSTM) improves the nonlinear relationship among the features. The proposed Pooled Multifuse Feature Augmentation (PMFA) with MCNN & A-BiLSTM increases the accuracy (98.66 %), reduces the False Positive Rate (FPR) by 1.01 %, and loss (0 %). Thus the model predicts the sound without overfitting, underfitting, and vanishing gradient problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
19应助迷人紫山采纳,获得10
3秒前
马家辉发布了新的文献求助10
3秒前
weslywang发布了新的文献求助10
4秒前
科目三应助一颗星采纳,获得10
6秒前
元谷雪发布了新的文献求助10
8秒前
一叶扁舟发布了新的文献求助10
10秒前
一颗星完成签到,获得积分10
10秒前
清脆金鱼完成签到,获得积分10
12秒前
12秒前
13秒前
15秒前
骨小梁发布了新的文献求助10
18秒前
共享精神应助周星星采纳,获得10
18秒前
yucj发布了新的文献求助10
18秒前
20秒前
21秒前
半糖神仙完成签到 ,获得积分10
22秒前
小菜鸟完成签到 ,获得积分10
22秒前
23秒前
江浪浪发布了新的文献求助10
24秒前
song完成签到,获得积分10
25秒前
科研通AI2S应助Luckyz采纳,获得10
26秒前
晏清完成签到 ,获得积分20
27秒前
李健应助科研通管家采纳,获得10
29秒前
cjs应助科研通管家采纳,获得10
29秒前
所所应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
29秒前
NexusExplorer应助科研通管家采纳,获得10
29秒前
寻道图强应助科研通管家采纳,获得30
29秒前
思源应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得10
29秒前
29秒前
芒果完成签到,获得积分10
31秒前
NexusExplorer应助花灯王子采纳,获得10
32秒前
Spark完成签到,获得积分10
34秒前
雨下着的坡道完成签到,获得积分10
36秒前
大力初珍完成签到 ,获得积分10
37秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825