TB-MFCC multifuse feature for emergency vehicle sound classification using multistacked CNN – Attention BiLSTM

过度拟合 Mel倒谱 计算机科学 卷积神经网络 特征提取 模式识别(心理学) 特征(语言学) 人工智能 语音识别 均方误差 人工神经网络 音频信号 噪音(视频) 数学 统计 哲学 语音编码 图像(数学) 语言学
作者
T. M. Nithya,P. Dhivya,S. N. Sangeethaa,P. Rajesh Kanna
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:88: 105688-105688 被引量:6
标识
DOI:10.1016/j.bspc.2023.105688
摘要

Vehicles equipped for emergencies like ambulances, fire engines, and police cruisers play a vital role in society by responding quickly to emergencies and helping to prevent loss of life and maintain order. Vehicle sound identification and classification are very important in the cities to identify emergency vehicles easily and to clear the traffic effectively. Convolutional Neural Network plays an important role in the accurate prediction of vehicles during an emergency. The main motive of this paper is to develop a suitable model and algorithms for data augmentation, feature extraction, and classification. The proposed TB-MFCC multifuse feature is comprised of data augmentation and feature extraction. First, in the proposed signal augmentation, each audio signal uses noise injection, stretching, shifting, and pitching separately and this process increases the number of instances in the dataset. The proposed augmentation reduces the overfitting problem in the network. Second, Triangular Bluestein Mel Frequency Cepstral Coefficients (TB-MFCC) are proposed and fused with Zero Crossing Rate (ZCR), Mel-frequency cepstral coefficients (MFCC), Root Mean Square (RMS), Chroma, and Tempogram to extract the exact feature which increases the accuracy and reduces the Mean Squared Error (MSE) of the model during classification. Finally, the proposed Multi-stacked Convolutional Neural Network (MCNN) with Attention-based Bidirectional Long Short Term Memory (A-BiLSTM) improves the nonlinear relationship among the features. The proposed Pooled Multifuse Feature Augmentation (PMFA) with MCNN & A-BiLSTM increases the accuracy (98.66 %), reduces the False Positive Rate (FPR) by 1.01 %, and loss (0 %). Thus the model predicts the sound without overfitting, underfitting, and vanishing gradient problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
情怀应助Aqua采纳,获得10
1秒前
小鹅发布了新的文献求助10
2秒前
黄同学发布了新的文献求助10
2秒前
韦颖完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
Rondab应助天行马采纳,获得10
6秒前
范医生01完成签到,获得积分10
6秒前
李子衡发布了新的文献求助10
6秒前
2202发布了新的文献求助10
7秒前
7秒前
香蕉觅云应助祁纯采纳,获得10
8秒前
8秒前
8秒前
小郭小郭福气多多完成签到,获得积分10
9秒前
9秒前
zy发布了新的文献求助20
9秒前
迷路盼易发布了新的文献求助10
9秒前
Lucas应助1029zx采纳,获得10
10秒前
理论家完成签到,获得积分10
11秒前
甲羟基戊二酸单酰辅酶A完成签到 ,获得积分10
11秒前
长情博超发布了新的文献求助200
12秒前
平淡亦云发布了新的文献求助10
13秒前
白菜包子发布了新的文献求助10
14秒前
打打应助小南采纳,获得10
14秒前
14秒前
mou发布了新的文献求助10
14秒前
祁纯完成签到,获得积分10
15秒前
这只蜗牛爬的有点慢完成签到,获得积分10
17秒前
欢喜的皮卡丘完成签到,获得积分10
17秒前
SciGPT应助李子衡采纳,获得10
17秒前
小王啵啵完成签到 ,获得积分10
18秒前
19秒前
19秒前
YYQX完成签到,获得积分10
19秒前
julia驳回了顾矜应助
19秒前
21秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952732
求助须知:如何正确求助?哪些是违规求助? 3498228
关于积分的说明 11090865
捐赠科研通 3228782
什么是DOI,文献DOI怎么找? 1785114
邀请新用户注册赠送积分活动 869105
科研通“疑难数据库(出版商)”最低求助积分说明 801350