偏微分方程
初始化
人工神经网络
趋同(经济学)
切线
数学
应用数学
核(代数)
微分方程
边值问题
数学分析
计算机科学
人工智能
几何学
纯数学
经济
程序设计语言
经济增长
作者
Zijian Zhou,Zhenya Yan
标识
DOI:10.1016/j.physd.2023.133987
摘要
In this paper, we study the neural tangent kernel (NTK) for general partial differential equations (PDEs) based on physics-informed neural networks (PINNs). As we all know, the training of an artificial neural network can be converted to the evolution of NTK. We analyze the initialization of NTK and the convergence conditions of NTK during training for general PDEs. The theoretical results show that the homogeneity of differential operators plays a crucial role for the convergence of NTK. Moreover, based on the PINNs, we validate the convergence conditions of NTK using the initial value problems of the sine–Gordon equation and the initial–boundary value problem of the KdV equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI