Sheared LLaMA: Accelerating Language Model Pre-training via Structured Pruning

修剪 人气 计算机科学 语言模型 钥匙(锁) 刮擦 航程(航空) 机器学习 人工智能 工程类 程序设计语言 心理学 生物 社会心理学 计算机安全 航空航天工程 农学
作者
Mengzhou Xia,Tianyu Gao,Zhiyuan Zeng,Danqi Chen
出处
期刊:Cornell University - arXiv 被引量:8
标识
DOI:10.48550/arxiv.2310.06694
摘要

The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged moderate-sized large language models (LLMs) highlights the potential of building smaller yet powerful LLMs. Regardless, the cost of training such models from scratch on trillions of tokens remains high. In this work, we study structured pruning as an effective means to develop smaller LLMs from pre-trained, larger models. Our approach employs two key techniques: (1) targeted structured pruning, which prunes a larger model to a specified target shape by removing layers, heads, and intermediate and hidden dimensions in an end-to-end manner, and (2) dynamic batch loading, which dynamically updates the composition of sampled data in each training batch based on varying losses across different domains. We demonstrate the efficacy of our approach by presenting the Sheared-LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B parameters. Sheared-LLaMA models outperform state-of-the-art open-source models of equivalent sizes, such as Pythia, INCITE, and OpenLLaMA models, on a wide range of downstream and instruction tuning evaluations, while requiring only 3% of compute compared to training such models from scratch. This work provides compelling evidence that leveraging existing LLMs with structured pruning is a far more cost-effective approach for building smaller LLMs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
minuxSCI完成签到,获得积分10
2秒前
4秒前
坚强铸海完成签到,获得积分10
5秒前
牛牛眉目发布了新的文献求助10
5秒前
5秒前
6秒前
干姜发布了新的文献求助10
7秒前
Pp发布了新的文献求助10
8秒前
666应助科研鸟采纳,获得10
8秒前
蓝天白云发布了新的文献求助10
8秒前
瓦解99发布了新的文献求助10
11秒前
yx_cheng应助zzz采纳,获得30
11秒前
Coraline应助jt采纳,获得10
12秒前
13秒前
18秒前
csy发布了新的文献求助10
20秒前
瓦解99完成签到,获得积分10
21秒前
21秒前
22秒前
张渔歌完成签到,获得积分10
22秒前
22秒前
23秒前
25秒前
asdf应助明天见采纳,获得10
25秒前
愉快天亦完成签到,获得积分10
26秒前
28秒前
28秒前
29秒前
Jasper应助科研通管家采纳,获得10
29秒前
Lucas应助科研通管家采纳,获得10
29秒前
ED应助科研通管家采纳,获得10
29秒前
彭于彦祖应助科研通管家采纳,获得30
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
好运来应助科研通管家采纳,获得10
29秒前
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388