Comparison of Constrained Unscented and Cubature Kalman Filters for Nonlinear System Parameter Identification

卡尔曼滤波器 状态向量 稳健性(进化) 非线性系统 计算机科学 协方差 扩展卡尔曼滤波器 控制理论(社会学) 集合卡尔曼滤波器 无味变换 算法 不变扩展卡尔曼滤波器 数学 统计 人工智能 物理 控制(管理) 量子力学 生物化学 化学 经典力学 基因
作者
Jixing Cao,Ser Tong Quek,Haibei Xiong,Zhenyu Yang
出处
期刊:Journal of Engineering Mechanics-asce [American Society of Civil Engineers]
卷期号:149 (11) 被引量:29
标识
DOI:10.1061/jenmdt.emeng-7091
摘要

Accurate and efficient parameter identification along with uncertainty quantification in nonlinear systems is crucial for enabling practical and reliable structural health monitoring and digital twinning. This paper presents a novel procedure for estimating parameters that combines Bayesian filters and truncated probability density functions (PDFs). To simplify the state-space equations, only model parameters are incorporated in the state equations, whereas the measurement equations are implicitly considered in the state vector of displacement and velocity. This simplification enables the unified implementation of three different types of Bayesian filters: the unscented Kalman filter, third-degree cubature Kalman filter, and fifth-degree cubature Kalman filter. Consequently, it facilitates the seamless integration of complex numerical models into the parameter identification procedure. To improve the robustness of the proposed method, the truncated PDF is employed to enforce constraints that prevent the covariance matrix from becoming singular. The applicability and accuracy of the proposed method were evaluated using a 10-story numerical example and a 12-story shake-table model. Based on the selected parameters for tuning, the estimated results are consistent with both the simulated and experimental data, demonstrating that the Bayesian filters can estimate parameters and quantify their uncertainties. Comparison of the estimation accuracy, computational cost, and efficiency index among the three types of Bayesian filters reveals that the fifth-degree cubature Kalman filter has the highest accuracy. When dealing with less complex structural models, the unscented Kalman filter demonstrates superior efficiency. These findings are useful for finite-element model updating and assessment of structural performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanage应助高大的友梅采纳,获得10
1秒前
CodeCraft应助学术小牛采纳,获得10
1秒前
jiayoujijin完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
平平无奇完成签到,获得积分10
2秒前
很6的森哥完成签到,获得积分10
3秒前
小龙发布了新的文献求助10
3秒前
美啊美完成签到,获得积分10
3秒前
娃哈哈完成签到 ,获得积分10
4秒前
科研小白完成签到,获得积分10
4秒前
无花果应助陈述采纳,获得10
4秒前
卡哥完成签到,获得积分10
5秒前
吃饭睡觉打豆豆完成签到,获得积分20
5秒前
生动的迎夏完成签到,获得积分10
6秒前
7秒前
神勇青枫应助LL采纳,获得10
7秒前
随风飘荡121完成签到,获得积分10
7秒前
勇者发布了新的文献求助10
7秒前
黄鱼饼完成签到,获得积分10
8秒前
Unicorn完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
热情芷烟关注了科研通微信公众号
10秒前
高大犀牛完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
共享精神应助yyc采纳,获得10
11秒前
懒惰扼杀激情完成签到 ,获得积分10
12秒前
12秒前
孙志乾发布了新的文献求助10
12秒前
12秒前
一一应助感动的不乐采纳,获得30
13秒前
13秒前
黑钻发布了新的文献求助10
14秒前
15秒前
15秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221620
求助须知:如何正确求助?哪些是违规求助? 2870333
关于积分的说明 8170293
捐赠科研通 2537291
什么是DOI,文献DOI怎么找? 1369377
科研通“疑难数据库(出版商)”最低求助积分说明 645466
邀请新用户注册赠送积分活动 619147