材料科学
钪
硫黄
阴极
氧化物
锂(药物)
碳纤维
化学工程
复合数
无机化学
物理化学
复合材料
化学
冶金
医学
工程类
内分泌学
作者
Hairong Mai,Qianchen Wang,Longhua Sun,Xiaodong Meng,Shang Chen,Ji Zhou,Yuncan Jia,Manyun Wang,Xinyi Han,Lichang Wang,Wenbin Gong,Guangxu Zhu,Jingyu Li,Christopher W. Bielawski,Jianxin Geng
标识
DOI:10.1021/acsami.3c03929
摘要
Nonstoichiometric compounds are widely used in contemporary energy technologies due to their high surface polarity, tailored electronic structure, high electrical conductivity, and other enhanced properties. However, the preparation of such nonstoichiometric compounds can be complicated and, in some cases, uncontrollable and dangerous. Here, we report a "one-pot" strategy for synthesizing N-doped porous graphitic carbon that is hybridized with nonstoichiometric scandium oxide (denoted as ScO0.95@N-PGC) and show that the composite significantly promotes sulfur cathode kinetics in lithium-sulfur (Li-S) batteries. The synthesis of the ScO0.95@N-PGC composite entails heating a porous dry gel that consists of a C source (glucose), a N source (dicyandiamide), and a Sc source (Sc(NO3)3·H2O). Thermally decomposing the dicyandiamide creates a highly reductive atmosphere that simultaneously affords the hypoxic state of the ScO0.95 and dopes the carbon matrix with nitrogen. Density functional theory reveals the presence of oxygen vacancies that enable the ScO0.95 crystals to function as excellent electrical conductors, exhibit enhanced adsorption toward polysulfides, and accelerate the cathode reactions by lowering the corresponding activation energies. Moreover, Li-S cells prepared from the ScO0.95@N-PGC composite display a high specific capacity (1046 mA h g-1 at 0.5 C), an outstanding cycling stability (641 mA h g-1 after 1000 charge-discharge cycles at 0.5 C, a capacity decay of 0.038% per cycle), and a particularly outstanding rate capability (438 mA h g-1 at 8 C). The methodology described establishes a sustainable approach for synthesizing nonstoichiometric compounds while broadening their potential utility in a broad range of energy technologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI