Attention feature fusion awareness network for vehicle target detection in SAR images

计算机科学 合成孔径雷达 人工智能 特征(语言学) 杂乱 自动目标识别 计算机视觉 深度学习 目标捕获 目标检测 模式识别(心理学) 雷达 遥感 地质学 哲学 电信 语言学
作者
Zhen Wang,Yaohui Liu,Shanwen Zhang,Buhong Wang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (17): 5228-5258
标识
DOI:10.1080/01431161.2023.2244642
摘要

ABSTRACTSynthetic aperture radar (SAR) target detection plays a crucial role in military surveillance, earth observation, and disaster monitoring. With the development of deep learning (DL) and SAR imaging technology, numerous SAR target detection methods have been proposed and achieved better detection results. However, detecting different categories of SAR vehicle targets is still challenging due to the influence of coherent speckle noises and background clutter. This article presents a novel attention feature fusion awareness network (AFFNet) for vehicle target detection in SAR images. Specifically, we propose a multi-scale semantic attention (MSSA) module to obtain multi-scale and semantic features of target region; the variable multi-scale feature fusion (VMSFF) module is introduced to effectively fuse different feature information and alleviate target deformation interference by establishing feature correlation; the part feature awareness (PFA) module is used to obtain unique attribute of different vehicle targets to generate accurate anchor boxes. In addition, we design a candidate boundary box selection scheme, which can effectively adapt to SAR targets with different scales and categories. Overall, AFFNet is designed based on the SAR imaging mechanism and target physical feature information. To evaluate the performance of the proposed method, extensive experiments are conducted on the MSTAR dataset. The experiment results show that the proposed AFFNet obtains the mAP of 98.36% and 97.26% on standard operating conditions (SOCs) and extended operating conditions (EOCs), which is more efficient than the other state-of-the-art methods.KEYWORDS: Synthetic aperture radar (SAR)deep learningvehicle target detectionfeature awarenessfeature fusion AcknowledgementsAll authors would sincerely thank the reviewers and editors for their beneficial, careful, and detailed comments and suggestions for improving the paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [42201077,61671465,62172338].

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助CHBW采纳,获得10
1秒前
berrycute发布了新的文献求助10
1秒前
陈静完成签到,获得积分10
2秒前
AAAADiao发布了新的文献求助10
3秒前
4秒前
闪闪觅松发布了新的文献求助10
5秒前
可爱的函函应助Jupiter 1234采纳,获得10
5秒前
yofaz完成签到,获得积分10
5秒前
6秒前
Lucas选李华完成签到 ,获得积分10
6秒前
7秒前
luoluo完成签到 ,获得积分10
8秒前
小酒窝发布了新的文献求助10
8秒前
Criminology34应助vivian采纳,获得10
9秒前
所所应助vivian采纳,获得10
9秒前
ding应助berrycute采纳,获得10
10秒前
科研通AI6应助zxg采纳,获得10
11秒前
calm发布了新的文献求助10
11秒前
11秒前
pluto应助哈哈采纳,获得10
11秒前
12秒前
12秒前
呆呆发布了新的文献求助10
13秒前
Kuroneko完成签到,获得积分20
13秒前
开心的饼干完成签到,获得积分10
14秒前
细心擎呢完成签到 ,获得积分10
14秒前
酷波er应助QQ采纳,获得10
14秒前
李乐发布了新的文献求助10
15秒前
merlin完成签到,获得积分10
16秒前
夜琉璃应助张先生采纳,获得10
17秒前
seven765发布了新的文献求助10
17秒前
kyf关闭了kyf文献求助
17秒前
echo完成签到 ,获得积分10
18秒前
李文广完成签到,获得积分10
18秒前
科研通AI6应助calm采纳,获得10
18秒前
qah发布了新的文献求助10
18秒前
19秒前
立青发布了新的文献求助10
19秒前
爱尔兰的狼完成签到,获得积分10
21秒前
香蕉觅云应助秋日思语采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565327
求助须知:如何正确求助?哪些是违规求助? 4650317
关于积分的说明 14690672
捐赠科研通 4592233
什么是DOI,文献DOI怎么找? 2519494
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463183