亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention feature fusion awareness network for vehicle target detection in SAR images

计算机科学 合成孔径雷达 人工智能 特征(语言学) 杂乱 自动目标识别 计算机视觉 深度学习 目标捕获 目标检测 模式识别(心理学) 雷达 遥感 地质学 哲学 电信 语言学
作者
Zhen Wang,Yaohui Liu,Shanwen Zhang,Buhong Wang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (17): 5228-5258
标识
DOI:10.1080/01431161.2023.2244642
摘要

ABSTRACTSynthetic aperture radar (SAR) target detection plays a crucial role in military surveillance, earth observation, and disaster monitoring. With the development of deep learning (DL) and SAR imaging technology, numerous SAR target detection methods have been proposed and achieved better detection results. However, detecting different categories of SAR vehicle targets is still challenging due to the influence of coherent speckle noises and background clutter. This article presents a novel attention feature fusion awareness network (AFFNet) for vehicle target detection in SAR images. Specifically, we propose a multi-scale semantic attention (MSSA) module to obtain multi-scale and semantic features of target region; the variable multi-scale feature fusion (VMSFF) module is introduced to effectively fuse different feature information and alleviate target deformation interference by establishing feature correlation; the part feature awareness (PFA) module is used to obtain unique attribute of different vehicle targets to generate accurate anchor boxes. In addition, we design a candidate boundary box selection scheme, which can effectively adapt to SAR targets with different scales and categories. Overall, AFFNet is designed based on the SAR imaging mechanism and target physical feature information. To evaluate the performance of the proposed method, extensive experiments are conducted on the MSTAR dataset. The experiment results show that the proposed AFFNet obtains the mAP of 98.36% and 97.26% on standard operating conditions (SOCs) and extended operating conditions (EOCs), which is more efficient than the other state-of-the-art methods.KEYWORDS: Synthetic aperture radar (SAR)deep learningvehicle target detectionfeature awarenessfeature fusion AcknowledgementsAll authors would sincerely thank the reviewers and editors for their beneficial, careful, and detailed comments and suggestions for improving the paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [42201077,61671465,62172338].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助细腻笑卉采纳,获得10
1秒前
量子星尘发布了新的文献求助10
24秒前
T-SL发布了新的文献求助10
29秒前
上官若男应助小狗采纳,获得10
45秒前
洁净白容完成签到,获得积分20
46秒前
T-SL完成签到,获得积分10
47秒前
SciGPT应助矢思然采纳,获得10
59秒前
1分钟前
打打应助展正希采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小狗发布了新的文献求助10
1分钟前
1分钟前
矢思然发布了新的文献求助10
1分钟前
1分钟前
善学以致用应助辣椒油采纳,获得10
2分钟前
2分钟前
ltt完成签到,获得积分10
2分钟前
2分钟前
ltt发布了新的文献求助10
2分钟前
2分钟前
完美世界应助mellow采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
天天快乐应助毛毛虫采纳,获得10
2分钟前
2分钟前
2分钟前
毛毛虫发布了新的文献求助10
2分钟前
展正希发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
展正希完成签到,获得积分10
3分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
liwu完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238312
什么是DOI,文献DOI怎么找? 1789690
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069