Attention feature fusion awareness network for vehicle target detection in SAR images

计算机科学 合成孔径雷达 人工智能 特征(语言学) 杂乱 自动目标识别 计算机视觉 深度学习 目标捕获 目标检测 模式识别(心理学) 雷达 遥感 地质学 哲学 电信 语言学
作者
Zhen Wang,Yaohui Liu,Shanwen Zhang,Buhong Wang
出处
期刊:International Journal of Remote Sensing [Taylor & Francis]
卷期号:44 (17): 5228-5258
标识
DOI:10.1080/01431161.2023.2244642
摘要

ABSTRACTSynthetic aperture radar (SAR) target detection plays a crucial role in military surveillance, earth observation, and disaster monitoring. With the development of deep learning (DL) and SAR imaging technology, numerous SAR target detection methods have been proposed and achieved better detection results. However, detecting different categories of SAR vehicle targets is still challenging due to the influence of coherent speckle noises and background clutter. This article presents a novel attention feature fusion awareness network (AFFNet) for vehicle target detection in SAR images. Specifically, we propose a multi-scale semantic attention (MSSA) module to obtain multi-scale and semantic features of target region; the variable multi-scale feature fusion (VMSFF) module is introduced to effectively fuse different feature information and alleviate target deformation interference by establishing feature correlation; the part feature awareness (PFA) module is used to obtain unique attribute of different vehicle targets to generate accurate anchor boxes. In addition, we design a candidate boundary box selection scheme, which can effectively adapt to SAR targets with different scales and categories. Overall, AFFNet is designed based on the SAR imaging mechanism and target physical feature information. To evaluate the performance of the proposed method, extensive experiments are conducted on the MSTAR dataset. The experiment results show that the proposed AFFNet obtains the mAP of 98.36% and 97.26% on standard operating conditions (SOCs) and extended operating conditions (EOCs), which is more efficient than the other state-of-the-art methods.KEYWORDS: Synthetic aperture radar (SAR)deep learningvehicle target detectionfeature awarenessfeature fusion AcknowledgementsAll authors would sincerely thank the reviewers and editors for their beneficial, careful, and detailed comments and suggestions for improving the paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [42201077,61671465,62172338].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猇会不会完成签到,获得积分20
刚刚
林安笙完成签到,获得积分10
刚刚
SciGPT应助杆杆采纳,获得10
1秒前
浮游应助wsh071117采纳,获得10
1秒前
慕青应助dxm采纳,获得10
1秒前
自觉画板发布了新的文献求助10
1秒前
2秒前
汉堡包应助HM采纳,获得10
2秒前
3秒前
李健的小迷弟应助小畅采纳,获得10
3秒前
3秒前
香蕉觅云应助zyd采纳,获得10
3秒前
CodeCraft应助瑶瑶采纳,获得10
3秒前
肥猫发布了新的文献求助10
4秒前
球球发布了新的文献求助10
5秒前
水水水完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
森陌夏栀发布了新的文献求助10
5秒前
123应助雷涵晶采纳,获得10
6秒前
6秒前
Bai_shao完成签到,获得积分10
6秒前
7秒前
Daily发布了新的文献求助10
7秒前
阳佟水蓉完成签到,获得积分10
7秒前
7秒前
英姑应助鲜艳的手链采纳,获得10
8秒前
8秒前
8秒前
9秒前
欣欣完成签到 ,获得积分10
9秒前
香蕉觅云应助龚仕杰采纳,获得10
9秒前
淡淡芷天应助球球采纳,获得10
9秒前
Zhang完成签到,获得积分10
9秒前
邱雪辉完成签到,获得积分10
9秒前
10秒前
隐形曼青应助刘欣采纳,获得10
10秒前
newsl完成签到,获得积分10
10秒前
11秒前
11秒前
隐形曼青应助yy湫采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454