Attention feature fusion awareness network for vehicle target detection in SAR images

计算机科学 合成孔径雷达 人工智能 特征(语言学) 杂乱 自动目标识别 计算机视觉 深度学习 目标捕获 目标检测 模式识别(心理学) 雷达 遥感 电信 哲学 语言学 地质学
作者
Zhen Wang,Yaohui Liu,Shanwen Zhang,Buhong Wang
出处
期刊:International Journal of Remote Sensing [Informa]
卷期号:44 (17): 5228-5258
标识
DOI:10.1080/01431161.2023.2244642
摘要

ABSTRACTSynthetic aperture radar (SAR) target detection plays a crucial role in military surveillance, earth observation, and disaster monitoring. With the development of deep learning (DL) and SAR imaging technology, numerous SAR target detection methods have been proposed and achieved better detection results. However, detecting different categories of SAR vehicle targets is still challenging due to the influence of coherent speckle noises and background clutter. This article presents a novel attention feature fusion awareness network (AFFNet) for vehicle target detection in SAR images. Specifically, we propose a multi-scale semantic attention (MSSA) module to obtain multi-scale and semantic features of target region; the variable multi-scale feature fusion (VMSFF) module is introduced to effectively fuse different feature information and alleviate target deformation interference by establishing feature correlation; the part feature awareness (PFA) module is used to obtain unique attribute of different vehicle targets to generate accurate anchor boxes. In addition, we design a candidate boundary box selection scheme, which can effectively adapt to SAR targets with different scales and categories. Overall, AFFNet is designed based on the SAR imaging mechanism and target physical feature information. To evaluate the performance of the proposed method, extensive experiments are conducted on the MSTAR dataset. The experiment results show that the proposed AFFNet obtains the mAP of 98.36% and 97.26% on standard operating conditions (SOCs) and extended operating conditions (EOCs), which is more efficient than the other state-of-the-art methods.KEYWORDS: Synthetic aperture radar (SAR)deep learningvehicle target detectionfeature awarenessfeature fusion AcknowledgementsAll authors would sincerely thank the reviewers and editors for their beneficial, careful, and detailed comments and suggestions for improving the paper.Disclosure statementNo potential conflict of interest was reported by the authors.Additional informationFundingThe work was supported by the National Natural Science Foundation of China [42201077,61671465,62172338].
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助柏林采纳,获得10
1秒前
小二郎应助李李采纳,获得10
1秒前
科研通AI2S应助姬霓太美采纳,获得10
1秒前
小蘑菇应助标致溪流采纳,获得10
2秒前
2秒前
上官若男应助范小小采纳,获得10
3秒前
流星雨发布了新的文献求助10
3秒前
小马甲应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
5秒前
晴月完成签到,获得积分20
5秒前
尼克11完成签到,获得积分10
7秒前
cdy发布了新的文献求助10
7秒前
堀江真夏发布了新的文献求助10
7秒前
colorful完成签到,获得积分10
8秒前
tianzml0应助完美向卉采纳,获得10
8秒前
赘婿应助恐怖稽器人采纳,获得10
9秒前
10秒前
11秒前
wuhu完成签到 ,获得积分10
13秒前
暖栀完成签到 ,获得积分10
13秒前
14秒前
17秒前
ShowMaker应助江小霜采纳,获得30
17秒前
七哥惠发布了新的文献求助10
17秒前
清水发布了新的文献求助10
18秒前
NIKE112完成签到,获得积分10
18秒前
情怀应助忘记的微笑采纳,获得20
18秒前
独特星月完成签到,获得积分10
19秒前
20秒前
JamesPei应助yaoyao采纳,获得10
22秒前
22秒前
哭泣沛珊发布了新的文献求助10
22秒前
xjcy应助流星雨采纳,获得10
23秒前
holmes发布了新的文献求助10
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161515
求助须知:如何正确求助?哪些是违规求助? 2812855
关于积分的说明 7897372
捐赠科研通 2471768
什么是DOI,文献DOI怎么找? 1316137
科研通“疑难数据库(出版商)”最低求助积分说明 631193
版权声明 602112