Tutorial on Empirical Mode Decomposition: Basis Decomposition and Frequency Adaptive Graduation in Non-Stationary Time Series

希尔伯特-黄变换 稳健性(进化) 计算机科学 奇异谱分析 算法 小波变换 基础(线性代数) 基函数 小波 数学 数学优化 人工智能 奇异值分解 白噪声 电信 数学分析 生物化学 化学 几何学 基因
作者
Cole van Jaarsveldt,Gareth W. Peters,Matthew M. Ames,Mike J. Chantler
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 94442-94478 被引量:9
标识
DOI:10.1109/access.2023.3307628
摘要

This tutorial explores the class of non-parametric time series basis decomposition methods particularly suited for nonstationary time series known as Empirical Mode Decomposition (EMD). In outlining a statistical perspective of the EMD method, it will be contrasted and combined (for the betterment of both methods) with other existing nonstationary basis decomposition methods. Some such techniques are functional Independent Component Analysis (ICA), Empirical Fourier Decomposition (EFD) (nonstationary extension of the Short-Time Fourier Transform (STFT), Empirical Wavelet Transform (EWT) (nonstationary extension of Morlet Wavelet Transform (MWT)), and Singular Spectrum Decomposition (SSD) (nonstationary extension and refinement of Singular Spectrum Analysis (SSA)). A detailed review of this time series basis decomposition approach is presented that explores 3 core aspects for a statistical audience: 1) the basis functions (Intrinsic Mode Functions (IMFs)) representation and estimation methods including robustness and optimal spline representations including smoothing and knot placements; 2) the computational and numerical robustness of various aspects of the iterative algorithmic design for EMD basis extraction, including treating carefully boundary effects; and 3) the first attempt at a population-based characterisation of EMD that provides a novel stochastic embedding of the EMD method within a stochastic model framework. Furthermore, the basis representations considered will be connected to local frequency graduation smoothing methods, demonstrating that these can be adapted to a local frequency adaptive framework within the EMD context. This will provide new practical insights into the interface between time series basis decomposition and graduation-smoothed representations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Shaka完成签到,获得积分10
1秒前
Van发布了新的文献求助30
1秒前
dongrr完成签到,获得积分20
2秒前
2秒前
2秒前
3秒前
ding应助顺利涵菡采纳,获得10
3秒前
3秒前
Wguan完成签到,获得积分10
3秒前
3秒前
领导范儿应助zzz采纳,获得10
4秒前
4秒前
充电宝应助靖柔采纳,获得10
4秒前
simu233发布了新的文献求助10
5秒前
星辰大海应助ddstty采纳,获得10
5秒前
5秒前
汉堡包应助navvv采纳,获得10
5秒前
明理的戾完成签到,获得积分10
6秒前
6秒前
QZZ完成签到,获得积分10
6秒前
6秒前
杨阳洋发布了新的文献求助10
6秒前
王欣完成签到 ,获得积分10
7秒前
7秒前
7秒前
Suppose发布了新的文献求助10
7秒前
CodeCraft应助机灵雅寒采纳,获得10
8秒前
1178067194应助vivian采纳,获得20
8秒前
小小完成签到,获得积分10
8秒前
Maxw发布了新的文献求助10
8秒前
8秒前
8秒前
CodeCraft应助科研白痴采纳,获得10
8秒前
勇者发布了新的文献求助10
8秒前
9秒前
LEE123发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474213
求助须知:如何正确求助?哪些是违规求助? 3066542
关于积分的说明 9099652
捐赠科研通 2757822
什么是DOI,文献DOI怎么找? 1513156
邀请新用户注册赠送积分活动 699436
科研通“疑难数据库(出版商)”最低求助积分说明 698963