化学
电化学
催化作用
锌
选择性
协调数
法拉第效率
Atom(片上系统)
离子
物理化学
电极
有机化学
计算机科学
嵌入式系统
作者
Gangya Wei,Yunxiang Li,Xupo Liu,Jinrui Huang,Mengran Liu,Deyan Luan,Shuyan Gao,Xiong Wen Lou
标识
DOI:10.1002/anie.202313914
摘要
Abstract Precise manipulation of the coordination environment of single‐atom catalysts (SACs), particularly the simultaneous engineering of multiple coordination shells, is crucial to maximize their catalytic performance but remains challenging. Herein, we present a general two‐step strategy to fabricate a series of hollow carbon‐based SACs featuring asymmetric Zn−N 2 O 2 moieties simultaneously modulated with S atoms in higher coordination shells of Zn centers (n≥2; designated as Zn−N 2 O 2 −S). Systematic analyses demonstrate that the synergetic effects between the N 2 O 2 species in the first coordination shell and the S atoms in higher coordination shells lead to robust discrete Zn sites with the optimal electronic structure for selective O 2 reduction to H 2 O 2 . Remarkably, the Zn−N 2 O 2 moiety with S atoms in the second coordination shell possesses a nearly ideal Gibbs free energy for the key OOH* intermediate, which favors the formation and desorption of OOH* on Zn sites for H 2 O 2 generation. Consequently, the Zn−N 2 O 2 −S SAC exhibits impressive electrochemical H 2 O 2 production performance with high selectivity of 96 %. Even at a high current density of 80 mA cm −2 in the flow cell, it shows a high H 2 O 2 production rate of 6.924 mol g cat −1 h −1 with an average Faradaic efficiency of 93.1 %, and excellent durability over 65 h.
科研通智能强力驱动
Strongly Powered by AbleSci AI