DC3DCD: Unsupervised learning for multiclass 3D point cloud change detection

计算机科学 变更检测 人工智能 点云 无监督学习 分割 背景(考古学) 深度学习 机器学习 任务(项目管理) 模式识别(心理学) 监督学习 人工神经网络 古生物学 管理 经济 生物
作者
Iris de Gélis,Sébastien Lefèvre,Thomas Corpetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 168-183
标识
DOI:10.1016/j.isprsjprs.2023.10.022
摘要

In a constant evolving world, change detection is of prime importance to keep updated maps. To better sense areas with complex geometry (urban areas in particular), considering 3D data appears to be an interesting alternative to classical 2D images. In this context, 3D point clouds (PCs), whether obtained through LiDAR or photogrammetric techniques, provide valuable information. While recent studies showed the considerable benefit of using deep learning-based methods to detect and characterize changes into raw 3D PCs, these studies rely on large annotated training data to obtain accurate results. The collection of these annotations are tricky and time-consuming. The availability of unsupervised or weakly supervised approaches is then of prime interest. In this paper, we propose an unsupervised method, called DeepCluster 3D Change Detection (DC3DCD), to detect and categorize multiclass changes at point level. We classify our approach in the unsupervised family given the fact that we extract in a completely unsupervised way a number of clusters associated with potential changes. Let us precise that in the end of the process, the user has only to assign a label to each of these clusters to derive the final change map. Our method builds upon the DeepCluster approach, originally designed for image classification, to handle complex raw 3D PCs and perform change segmentation task. An assessment of the method on both simulated and real public dataset is provided. The proposed method allows to outperform fully-supervised traditional machine learning algorithm and to be competitive with fully-supervised deep learning networks applied on rasterization of 3D PCs with a mean of IoU over classes of change of 57.06% and 66.69% for the simulated and the real datasets, respectively. The code is available at https://github.com/idegelis/torch-points3d-dc3dcd.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
煎饼果子完成签到 ,获得积分10
1秒前
影流完成签到,获得积分10
1秒前
1秒前
wen完成签到,获得积分10
2秒前
越幸运完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
山海又一程完成签到,获得积分10
4秒前
贵贵完成签到,获得积分10
4秒前
Nora完成签到,获得积分10
4秒前
蓝白胖次哇完成签到,获得积分10
5秒前
稀里糊涂完成签到,获得积分10
5秒前
cheng完成签到,获得积分10
6秒前
瞿采枫完成签到,获得积分10
7秒前
lifeng完成签到 ,获得积分10
8秒前
夜雨清痕y完成签到,获得积分10
9秒前
Epiphany完成签到,获得积分10
9秒前
无限的千凝完成签到 ,获得积分10
9秒前
chenm0333042完成签到,获得积分10
9秒前
我我我完成签到,获得积分10
10秒前
大力完成签到,获得积分10
10秒前
Raki完成签到,获得积分10
11秒前
熏熏完成签到 ,获得积分10
11秒前
cclday完成签到,获得积分10
12秒前
铂铑钯钌完成签到,获得积分0
12秒前
可可可不乐完成签到,获得积分10
12秒前
毅然决然必然完成签到,获得积分10
13秒前
能干戒指完成签到,获得积分10
14秒前
小潘同学完成签到 ,获得积分10
14秒前
Frank完成签到,获得积分0
15秒前
syh5527029完成签到 ,获得积分10
15秒前
18秒前
Zhao完成签到,获得积分10
19秒前
波波完成签到,获得积分10
19秒前
广州东站完成签到,获得积分10
20秒前
香蕉白容完成签到,获得积分10
20秒前
松山小吏完成签到,获得积分10
21秒前
sss完成签到,获得积分10
21秒前
PhD_Lee73完成签到 ,获得积分10
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5698678
求助须知:如何正确求助?哪些是违规求助? 5125927
关于积分的说明 15222008
捐赠科研通 4853689
什么是DOI,文献DOI怎么找? 2604206
邀请新用户注册赠送积分活动 1555733
关于科研通互助平台的介绍 1514086