DC3DCD: Unsupervised learning for multiclass 3D point cloud change detection

计算机科学 变更检测 人工智能 点云 无监督学习 分割 背景(考古学) 深度学习 机器学习 任务(项目管理) 模式识别(心理学) 监督学习 人工神经网络 古生物学 经济 管理 生物
作者
Iris de Gélis,Sébastien Lefèvre,Thomas Corpetti
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:206: 168-183
标识
DOI:10.1016/j.isprsjprs.2023.10.022
摘要

In a constant evolving world, change detection is of prime importance to keep updated maps. To better sense areas with complex geometry (urban areas in particular), considering 3D data appears to be an interesting alternative to classical 2D images. In this context, 3D point clouds (PCs), whether obtained through LiDAR or photogrammetric techniques, provide valuable information. While recent studies showed the considerable benefit of using deep learning-based methods to detect and characterize changes into raw 3D PCs, these studies rely on large annotated training data to obtain accurate results. The collection of these annotations are tricky and time-consuming. The availability of unsupervised or weakly supervised approaches is then of prime interest. In this paper, we propose an unsupervised method, called DeepCluster 3D Change Detection (DC3DCD), to detect and categorize multiclass changes at point level. We classify our approach in the unsupervised family given the fact that we extract in a completely unsupervised way a number of clusters associated with potential changes. Let us precise that in the end of the process, the user has only to assign a label to each of these clusters to derive the final change map. Our method builds upon the DeepCluster approach, originally designed for image classification, to handle complex raw 3D PCs and perform change segmentation task. An assessment of the method on both simulated and real public dataset is provided. The proposed method allows to outperform fully-supervised traditional machine learning algorithm and to be competitive with fully-supervised deep learning networks applied on rasterization of 3D PCs with a mean of IoU over classes of change of 57.06% and 66.69% for the simulated and the real datasets, respectively. The code is available at https://github.com/idegelis/torch-points3d-dc3dcd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花凉发布了新的文献求助20
1秒前
2秒前
An发布了新的文献求助30
3秒前
朴实一曲完成签到,获得积分10
4秒前
dreamrain发布了新的文献求助10
6秒前
阔达的盼旋完成签到,获得积分10
7秒前
8秒前
8秒前
gy完成签到,获得积分10
9秒前
bkagyin应助花凉采纳,获得10
9秒前
11秒前
黎悦关注了科研通微信公众号
12秒前
嘻嘻子完成签到,获得积分10
13秒前
陈小青完成签到 ,获得积分10
13秒前
跳跃发布了新的文献求助10
14秒前
djbj2022发布了新的文献求助10
15秒前
17秒前
华仔应助HCXsir采纳,获得10
17秒前
邓邓完成签到,获得积分10
17秒前
18秒前
kchrisuzad完成签到,获得积分10
18秒前
19秒前
朴实一曲发布了新的文献求助10
21秒前
tttttt应助nengzou采纳,获得10
22秒前
花凉发布了新的文献求助10
22秒前
23秒前
tgd完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
房山芙完成签到,获得积分10
25秒前
七月完成签到 ,获得积分10
25秒前
27秒前
简单点发布了新的文献求助10
27秒前
M1982发布了新的文献求助10
28秒前
冷静的跌发布了新的文献求助10
29秒前
Lucas应助DrWang采纳,获得10
29秒前
30秒前
32秒前
33秒前
高分求助中
The Data Economy: Tools and Applications 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3120178
求助须知:如何正确求助?哪些是违规求助? 2770845
关于积分的说明 7705580
捐赠科研通 2426002
什么是DOI,文献DOI怎么找? 1288363
科研通“疑难数据库(出版商)”最低求助积分说明 620947
版权声明 600010