亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

S3: Social-network Simulation System with Large Language Model-Empowered Agents

计算机科学
作者
Chen Gao,Xiaochong Lan,Zhihong Lu,Jinzhu Mao,Jinghua Piao,Huandong Wang,Depeng Jin,Yong Li
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:23
标识
DOI:10.2139/ssrn.4607026
摘要

Simulation plays a crucial role in addressing various challenges within social science. It offers extensive applications such as state prediction, phenomena explanation, and policy-making support, among others. In this work, we harness the human-like capabilities of large language models (LLMs) in sensing, reasoning, and behaving, and utilize these qualities to construct the S3 system (short for Social network Simulation System). Adhering to the widely employed agent-based simulation paradigm, we employ fine-tuning and prompt engineering techniques to ensure that the agent's behavior closely emulates that of a genuine human within the social network. Specifically, we simulate three pivotal aspects: emotion, attitude, and interaction behaviors. By endowing the agent in the system with the ability to perceive the informational environment and emulate human actions, we observe the emergence of population-level phenomena, including the propagation of information, attitudes, and emotions. We conduct an evaluation encompassing two levels of simulation, employing real-world social network data. Encouragingly, the results demonstrate promising accuracy. This work represents an initial step in the realm of social network simulation empowered by LLM-based agents. We anticipate that our endeavors will serve as a source of inspiration for the development of simulation systems within, but not limited to, social science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
科研废人发布了新的文献求助10
13秒前
诚心的信封完成签到 ,获得积分10
21秒前
38秒前
55秒前
77发布了新的文献求助10
58秒前
1分钟前
1分钟前
Babyblue发布了新的文献求助10
1分钟前
Hello应助Babyblue采纳,获得10
1分钟前
2分钟前
2分钟前
sisyphus发布了新的文献求助10
2分钟前
上官若男应助TYmtdjbYDD采纳,获得10
2分钟前
Timo干物类完成签到,获得积分10
2分钟前
pin完成签到 ,获得积分10
3分钟前
李爱国应助wpj采纳,获得10
3分钟前
Akim应助科研通管家采纳,获得10
3分钟前
qrwyqjbsd应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
茶茶完成签到,获得积分10
4分钟前
4分钟前
5分钟前
AM发布了新的文献求助10
5分钟前
qrwyqjbsd应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
ling361完成签到,获得积分10
5分钟前
铭铭铭发布了新的文献求助10
6分钟前
6分钟前
6分钟前
淡定幼荷发布了新的文献求助10
6分钟前
淡定幼荷完成签到,获得积分10
6分钟前
7分钟前
benbenca发布了新的文献求助20
7分钟前
7分钟前
liudy发布了新的文献求助10
7分钟前
孔wj发布了新的文献求助10
7分钟前
7分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509008
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896