Data Driven Discovery of MOFs for Hydrogen Gas Adsorption

吸附 金属有机骨架 氢气储存 计算机科学 材料科学 化学 有机化学
作者
Samrendra Singh,Abhishek T. Sose,Fangxi Wang,Karteek K. Bejagam,Sanket A. Deshmukh
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (19): 6686-6703 被引量:6
标识
DOI:10.1021/acs.jctc.3c00081
摘要

Hydrogen gas (H2) is a clean and renewable energy source, but the lack of efficient and cost-effective storage materials is a challenge to its widespread use. Metal-organic frameworks (MOFs), a class of porous materials, have been extensively studied for H2 storage due to their tunable structural and chemical features. However, the large design space offered by MOFs makes it challenging to select or design appropriate MOFs with a high H2 storage capacity. To overcome these challenges, we present a data-driven computational approach that systematically designs new functionalized MOFs for H2 storage. In particular, we showcase the framework of a hybrid particle swarm optimization integrated genetic algorithm, grand canonical Monte Carlo (GCMC) simulations, and our in-house MOF structure generation code to design new MOFs with excellent H2 uptake. This automated, data driven framework adds appropriate functional groups to IRMOF-10 to improve its H2 adsorption capacity. A detailed analysis of the top selected MOFs, their adsorption isotherms, and MOF design rules to enhance H2 adsorption are presented. We found a functionalized IRMOF-10 with an enhanced H2 adsorption increased by ∼6 times compared to that of pure IRMOF-10 at 1 bar and 77 K. Furthermore, this study also utilizes machine learning and deep learning techniques to analyze a large data set of MOF structures and properties, in order to identify the key factors that influence hydrogen adsorption. The proof-of-concept that uses a machine learning/deep learning approach to predict hydrogen adsorption based on the identified structural and chemical properties of the MOF is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的安南完成签到,获得积分10
刚刚
H_C完成签到,获得积分10
刚刚
刚刚
1秒前
迢迢笙箫应助奶糖喵采纳,获得10
1秒前
FashionBoy应助123采纳,获得10
2秒前
smilexue完成签到,获得积分10
3秒前
阿瑶发布了新的文献求助10
3秒前
兀垚完成签到,获得积分10
3秒前
可乐关注了科研通微信公众号
3秒前
年轻的路人完成签到,获得积分10
4秒前
Akim应助QQQ采纳,获得10
4秒前
王先森发布了新的文献求助20
4秒前
温暖亦旋完成签到,获得积分10
5秒前
5秒前
欧阳发布了新的文献求助10
6秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
修仙应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
积极慕梅应助科研通管家采纳,获得10
7秒前
7秒前
ding应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
FIONA完成签到 ,获得积分10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
LAlalal发布了新的文献求助10
7秒前
阿瑶完成签到,获得积分10
8秒前
akamanuo完成签到,获得积分10
10秒前
10秒前
希望天下0贩的0应助兀垚采纳,获得10
11秒前
lllll完成签到,获得积分10
12秒前
13秒前
xsuvian完成签到,获得积分10
13秒前
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149540
求助须知:如何正确求助?哪些是违规求助? 2800615
关于积分的说明 7840805
捐赠科研通 2458144
什么是DOI,文献DOI怎么找? 1308295
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706