Data Driven Discovery of MOFs for Hydrogen Gas Adsorption

吸附 金属有机骨架 氢气储存 计算机科学 材料科学 化学 有机化学
作者
Samrendra Singh,Abhishek T. Sose,Fangxi Wang,Karteek K. Bejagam,Sanket A. Deshmukh
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (19): 6686-6703 被引量:6
标识
DOI:10.1021/acs.jctc.3c00081
摘要

Hydrogen gas (H2) is a clean and renewable energy source, but the lack of efficient and cost-effective storage materials is a challenge to its widespread use. Metal-organic frameworks (MOFs), a class of porous materials, have been extensively studied for H2 storage due to their tunable structural and chemical features. However, the large design space offered by MOFs makes it challenging to select or design appropriate MOFs with a high H2 storage capacity. To overcome these challenges, we present a data-driven computational approach that systematically designs new functionalized MOFs for H2 storage. In particular, we showcase the framework of a hybrid particle swarm optimization integrated genetic algorithm, grand canonical Monte Carlo (GCMC) simulations, and our in-house MOF structure generation code to design new MOFs with excellent H2 uptake. This automated, data driven framework adds appropriate functional groups to IRMOF-10 to improve its H2 adsorption capacity. A detailed analysis of the top selected MOFs, their adsorption isotherms, and MOF design rules to enhance H2 adsorption are presented. We found a functionalized IRMOF-10 with an enhanced H2 adsorption increased by ∼6 times compared to that of pure IRMOF-10 at 1 bar and 77 K. Furthermore, this study also utilizes machine learning and deep learning techniques to analyze a large data set of MOF structures and properties, in order to identify the key factors that influence hydrogen adsorption. The proof-of-concept that uses a machine learning/deep learning approach to predict hydrogen adsorption based on the identified structural and chemical properties of the MOF is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
krystal发布了新的文献求助10
刚刚
1秒前
15122303完成签到,获得积分10
1秒前
lht完成签到 ,获得积分10
2秒前
传奇3应助纯真电源采纳,获得10
2秒前
环走鱼尾纹完成签到 ,获得积分10
2秒前
xiuxiu_27发布了新的文献求助10
3秒前
222完成签到,获得积分10
3秒前
zyz1132完成签到,获得积分10
3秒前
何处芳歇完成签到,获得积分10
4秒前
4秒前
LXYang完成签到,获得积分10
4秒前
4秒前
LL完成签到,获得积分10
4秒前
5秒前
5秒前
十月发布了新的文献求助20
6秒前
6秒前
针地很不戳完成签到,获得积分10
6秒前
7秒前
奋斗金连完成签到,获得积分10
7秒前
科研菜鸟完成签到,获得积分10
7秒前
圈圈发布了新的文献求助10
8秒前
zhanglh完成签到 ,获得积分10
8秒前
8秒前
Liu完成签到,获得积分10
8秒前
啊大大哇完成签到,获得积分10
8秒前
一平驳回了HEIKU应助
9秒前
9秒前
草莓奶昔完成签到 ,获得积分10
9秒前
cyx发布了新的文献求助10
9秒前
10秒前
littleJ完成签到,获得积分10
10秒前
Yolo发布了新的文献求助10
10秒前
阿尔法发布了新的文献求助10
11秒前
科研菜鸟发布了新的文献求助10
11秒前
Liu发布了新的文献求助10
11秒前
鱼跃完成签到,获得积分10
12秒前
烟花应助Ricardo采纳,获得10
13秒前
zsh完成签到,获得积分20
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678