Data Driven Discovery of MOFs for Hydrogen Gas Adsorption

吸附 金属有机骨架 氢气储存 计算机科学 材料科学 化学 有机化学
作者
Samrendra Singh,Abhishek T. Sose,Fangxi Wang,Karteek K. Bejagam,Sanket A. Deshmukh
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:19 (19): 6686-6703 被引量:6
标识
DOI:10.1021/acs.jctc.3c00081
摘要

Hydrogen gas (H2) is a clean and renewable energy source, but the lack of efficient and cost-effective storage materials is a challenge to its widespread use. Metal-organic frameworks (MOFs), a class of porous materials, have been extensively studied for H2 storage due to their tunable structural and chemical features. However, the large design space offered by MOFs makes it challenging to select or design appropriate MOFs with a high H2 storage capacity. To overcome these challenges, we present a data-driven computational approach that systematically designs new functionalized MOFs for H2 storage. In particular, we showcase the framework of a hybrid particle swarm optimization integrated genetic algorithm, grand canonical Monte Carlo (GCMC) simulations, and our in-house MOF structure generation code to design new MOFs with excellent H2 uptake. This automated, data driven framework adds appropriate functional groups to IRMOF-10 to improve its H2 adsorption capacity. A detailed analysis of the top selected MOFs, their adsorption isotherms, and MOF design rules to enhance H2 adsorption are presented. We found a functionalized IRMOF-10 with an enhanced H2 adsorption increased by ∼6 times compared to that of pure IRMOF-10 at 1 bar and 77 K. Furthermore, this study also utilizes machine learning and deep learning techniques to analyze a large data set of MOF structures and properties, in order to identify the key factors that influence hydrogen adsorption. The proof-of-concept that uses a machine learning/deep learning approach to predict hydrogen adsorption based on the identified structural and chemical properties of the MOF is demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助chang采纳,获得10
刚刚
魔幻含芙发布了新的文献求助30
1秒前
min完成签到,获得积分20
2秒前
思源应助364zdk采纳,获得10
2秒前
不奈何完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
彭于晏应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
领导范儿应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
思源应助科研通管家采纳,获得10
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
柯一一应助科研通管家采纳,获得10
6秒前
7秒前
zhull应助科研通管家采纳,获得10
7秒前
啊嚯发布了新的文献求助10
7秒前
清明发布了新的文献求助10
7秒前
谦让寻绿完成签到,获得积分10
8秒前
maymei发布了新的文献求助10
8秒前
8秒前
9秒前
小白完成签到,获得积分10
9秒前
chang发布了新的文献求助10
11秒前
min发布了新的文献求助10
12秒前
不摇碧莲完成签到 ,获得积分10
12秒前
xuli-888完成签到,获得积分10
13秒前
领导范儿应助咸鱼采纳,获得10
13秒前
13秒前
汉堡包应助maymei采纳,获得10
13秒前
充电宝应助小白采纳,获得10
14秒前
15秒前
田様应助为你博弈采纳,获得10
15秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962070
求助须知:如何正确求助?哪些是违规求助? 3508372
关于积分的说明 11140413
捐赠科研通 3240967
什么是DOI,文献DOI怎么找? 1791157
邀请新用户注册赠送积分活动 872793
科研通“疑难数据库(出版商)”最低求助积分说明 803371