Rational Design of Ion‐Conductive Layer on Si Anode Enables Superior‐Stable Lithium‐Ion Batteries

阳极 法拉第效率 材料科学 锂(药物) 电导率 化学工程 碳纤维 离子 电极 阴极 无定形固体 锂离子电池 电池(电) 扩散阻挡层 纳米技术 扩散 异质结 图层(电子) 光电子学 复合材料 化学 复合数 结晶学 物理化学 有机化学 功率(物理) 量子力学 内分泌学 医学 工程类 物理 热力学
作者
Ziyang Wang,Meng Yao,Hang Luo,Changhaoyue Xu,Hao Tian,Qian Wang,Hao Wu,Qianyu Zhang,Yuping Wu
出处
期刊:Small [Wiley]
卷期号:20 (5) 被引量:31
标识
DOI:10.1002/smll.202306428
摘要

Abstract Silicon (Si) is considered a promising commercial material for the next‐generation of high‐energy density lithium‐ion battery (LIB) due to its high theoretical capacity. However, the severe volume changes and the poor conductivity hinder the practical application of Si anode. Herein, a novel core–shell heterostructure, Si as the core and V 3 O 4 @C as the shell (Si@V 3 O 4 @C), is proposed by a facile solvothermal reaction. Theoretical simulations have shown that the in‐situ‐formed V 3 O 4 layer facilitates the rapid Li + diffusion and lowers the energy barrier of Li transport from the carbon shell to the inner core. The 3D network structure constructed by amorphous carbon can effectively improve electronic conductivity and structural stability. Benefiting from the rationally designed structure, the optimized Si@V 3 O 4 @C electrode exhibits an excellent cycling stability of 1061.1 mAh g −1 at 0.5 A g −1 over 700 cycles (capacity retention of 70.0%) with an average Coulombic efficiency of 99.3%. In addition, the Si@V 3 O 4 @C||LiFePO 4 full cell shows a superior capacity retention of 78.7% after 130 cycles at 0.5 C. This study opens a novel way for designing high‐performance silicon anode for advanced LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bing完成签到,获得积分10
刚刚
Sleven完成签到,获得积分10
1秒前
强壮的美女完成签到,获得积分10
5秒前
郭磊完成签到 ,获得积分10
5秒前
俭朴的一曲完成签到,获得积分10
9秒前
TheGreat完成签到,获得积分10
10秒前
Murphy~完成签到,获得积分10
11秒前
优雅的千雁完成签到,获得积分10
12秒前
13秒前
阿烨完成签到,获得积分10
14秒前
16秒前
某只橘猫君完成签到,获得积分10
18秒前
qaplay完成签到 ,获得积分0
21秒前
韩寒完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
悟空完成签到 ,获得积分10
25秒前
nglmy77完成签到 ,获得积分10
25秒前
每天都很忙完成签到 ,获得积分10
26秒前
lhz完成签到,获得积分20
27秒前
27秒前
mayberichard完成签到,获得积分10
32秒前
林美芳完成签到 ,获得积分10
35秒前
米博士完成签到,获得积分10
38秒前
斯文远望完成签到,获得积分10
39秒前
ZHZ完成签到,获得积分10
43秒前
jjyy完成签到,获得积分10
43秒前
危机的秋双完成签到 ,获得积分10
45秒前
jfeng完成签到,获得积分10
46秒前
纯氧完成签到,获得积分10
46秒前
听话的尔竹完成签到 ,获得积分10
48秒前
生命科学的第一推动力完成签到 ,获得积分10
49秒前
50秒前
量子星尘发布了新的文献求助10
50秒前
xiaoliu完成签到,获得积分10
51秒前
lishiwei完成签到 ,获得积分10
51秒前
银河里完成签到 ,获得积分10
53秒前
chi完成签到 ,获得积分10
54秒前
懵懂的钢笔完成签到 ,获得积分10
56秒前
知行合一完成签到 ,获得积分10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5432818
求助须知:如何正确求助?哪些是违规求助? 4545308
关于积分的说明 14195402
捐赠科研通 4464808
什么是DOI,文献DOI怎么找? 2447268
邀请新用户注册赠送积分活动 1438558
关于科研通互助平台的介绍 1415601