Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 任务(项目管理) 任务分析 特征(语言学) 机器学习 数据挖掘 计算机视觉 语言学 哲学 管理 经济
作者
Zhongxi Qiu,Yan Hu,Xiaoshan Chen,Dan Zeng,Qingyong Hu,Jiang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 451-464 被引量:6
标识
DOI:10.1109/tpami.2023.3322735
摘要

Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation studies are conducted to demonstrate the significance of our DS2F.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助zyz采纳,获得10
刚刚
纯真的老黑完成签到,获得积分10
刚刚
研友_nPPzon发布了新的文献求助30
1秒前
1秒前
zhuboujs发布了新的文献求助10
2秒前
3秒前
moco完成签到,获得积分10
5秒前
6秒前
CC2333完成签到,获得积分10
6秒前
姜生发布了新的文献求助10
6秒前
7秒前
酷波er应助天真的丹亦采纳,获得10
7秒前
禹子骞完成签到,获得积分10
7秒前
黙宇循光发布了新的文献求助10
8秒前
搜集达人应助赵zhao采纳,获得10
8秒前
小蘑菇应助liuwei采纳,获得10
10秒前
bfz50完成签到,获得积分10
10秒前
10秒前
AAA111122发布了新的文献求助10
11秒前
11秒前
zyz发布了新的文献求助10
11秒前
11秒前
JamesPei应助姜生采纳,获得10
12秒前
JAJ驳回了思源应助
12秒前
12秒前
13秒前
14秒前
15秒前
zzz发布了新的文献求助10
15秒前
彭于晏应助糖糖采纳,获得10
15秒前
小马甲应助不知道采纳,获得10
16秒前
科研通AI2S应助zyz采纳,获得10
17秒前
17秒前
隐形曼青应助俏皮沛柔采纳,获得10
18秒前
赵zhao完成签到,获得积分20
18秒前
19秒前
19秒前
20秒前
20秒前
小武哥完成签到 ,获得积分10
21秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141717
求助须知:如何正确求助?哪些是违规求助? 2792627
关于积分的说明 7803778
捐赠科研通 2448954
什么是DOI,文献DOI怎么找? 1302939
科研通“疑难数据库(出版商)”最低求助积分说明 626683
版权声明 601244