亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 任务(项目管理) 任务分析 特征(语言学) 机器学习 数据挖掘 计算机视觉 语言学 哲学 经济 管理
作者
Zhongxi Qiu,Yan Hu,Xiaoshan Chen,Dan Zeng,Qingyong Hu,Jiang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (1): 451-464 被引量:21
标识
DOI:10.1109/tpami.2023.3322735
摘要

Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation studies are conducted to demonstrate the significance of our DS2F.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫抓板发布了新的文献求助10
16秒前
wanci应助小飞采纳,获得10
16秒前
17秒前
17秒前
jane123发布了新的文献求助10
21秒前
jjc发布了新的文献求助10
22秒前
26秒前
小飞发布了新的文献求助10
31秒前
51秒前
康宁完成签到,获得积分10
1分钟前
酷波er应助我啊采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
从来都不会放弃zr完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Tirachen发布了新的文献求助10
1分钟前
CipherSage应助可爱花瓣采纳,获得10
1分钟前
我啊发布了新的文献求助10
1分钟前
Tirachen完成签到,获得积分10
1分钟前
1分钟前
大模型应助我啊采纳,获得10
1分钟前
可爱花瓣发布了新的文献求助10
1分钟前
Yuki完成签到 ,获得积分10
2分钟前
浮游应助ABBCCC采纳,获得10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得30
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得30
3分钟前
ABBCCC发布了新的文献求助10
3分钟前
所所应助宋芽芽采纳,获得100
3分钟前
3分钟前
ZXneuro完成签到,获得积分10
3分钟前
葱葱花卷完成签到 ,获得积分10
4分钟前
4分钟前
我啊完成签到,获得积分10
4分钟前
HMYX完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426582
求助须知:如何正确求助?哪些是违规求助? 4540281
关于积分的说明 14171923
捐赠科研通 4458061
什么是DOI,文献DOI怎么找? 2444804
邀请新用户注册赠送积分活动 1435870
关于科研通互助平台的介绍 1413309