Rethinking Dual-Stream Super-Resolution Semantic Learning in Medical Image Segmentation

计算机科学 人工智能 特征提取 分割 图像分割 模式识别(心理学) 任务(项目管理) 任务分析 特征(语言学) 机器学习 数据挖掘 计算机视觉 语言学 哲学 管理 经济
作者
Zhongxi Qiu,Yan Hu,Xiaoshan Chen,Dan Zeng,Qingyong Hu,Jiang Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (1): 451-464 被引量:6
标识
DOI:10.1109/tpami.2023.3322735
摘要

Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation studies are conducted to demonstrate the significance of our DS2F.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nium完成签到,获得积分10
刚刚
酷波er应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
64658应助科研通管家采纳,获得10
1秒前
May应助科研通管家采纳,获得20
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
2秒前
2秒前
64658应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
核桃应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
大个应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
Summer完成签到,获得积分10
3秒前
4秒前
大可完成签到 ,获得积分10
4秒前
5秒前
慕青应助jacs111采纳,获得10
5秒前
6秒前
7秒前
Summer发布了新的文献求助10
7秒前
顾矜应助英勇的钢铁侠采纳,获得10
7秒前
zhangw完成签到,获得积分10
7秒前
爱因斯坦那个和我一样的科学家完成签到 ,获得积分10
8秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296