Dual-Photoelectrode Fuel Cell Based Self-Powered Sensor for a Picomole Level Pollutant: Using an In Situ Molecularly Imprinted p-Type Organic Photocathode

光电阴极 化学 原位 污染物 分子印迹 环境化学 选择性 色谱法 有机化学 催化作用 物理 量子力学 电子
作者
Qichen Chen,Ziwei Zhang,Bingyu Du,Meichuan Liu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (43): 15975-15984 被引量:15
标识
DOI:10.1021/acs.analchem.3c03066
摘要

Developing a dual-photoelectrode fuel cell based self-powered sensor (DPFC-SPS) with an ideal signal output capability and high sensitivity performance for the detection of environmental pollutant atrazine (ATZ) has an important value. In this work, the in situ molecularly imprinting functionalized p-type organic semiconductor polyterthiophene (MI-pTTh) is used as a photocathode to construct a DPFC-SPS toward the typical environmental pollutant ATZ for the first time. Due to its excellent photoactivity, higher stability, and superior oxygen reduction reaction activity, pTTh serves as the photocathode material for constructing a self-powered sensing platform with a stable signal output and high photoelectric activity. Based on the sensitive light-triggered large self-bias of the DPFC-SPS, the open circuit potential (EOCV) of the device reaches 1.21 V and the maximum power density (Pmax) reaches 121.5 μW·cm–2, which is much higher than most reported PFC-SPSs. Simultaneously, in situ molecularly imprinted (MI) functionization of pTTh can further endow it with specific recognition ability, helping the constructed SPS achieve high sensitivity, selectivity, and effective recognition of the important environmental pollutants ATZ in complex systems. It exhibits a broad linear relationship from 0.002 to 100 nM and a low detection limit (estimated by S/N > 3) of 0.21 pM toward ATZ. The mechanism of the binding kinetics of the MI-pTTh with the target ATZ is further studied via in situ infrared spectroscopy. This work provides theoretical guidance for sensing strategies using dual-photoelectrode devices and offers a rational device design for cost-effective electricity generation from renewable resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助roy_chiang采纳,获得10
1秒前
科研通AI5应助Nyxia采纳,获得10
1秒前
大葱发布了新的文献求助10
2秒前
情怀应助warmhelium采纳,获得10
2秒前
真水无香123应助饱满懿轩采纳,获得10
2秒前
3秒前
orixero应助科研通管家采纳,获得10
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
VDC应助科研通管家采纳,获得30
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得10
3秒前
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
CodeCraft应助动听书雁采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
苏卿应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
4秒前
科研通AI5应助粘粘纸采纳,获得10
4秒前
天天下文献完成签到 ,获得积分10
4秒前
废寝忘食发布了新的文献求助10
4秒前
5秒前
天天快乐应助跳跃凡桃采纳,获得10
5秒前
5秒前
5秒前
6秒前
LingC完成签到,获得积分10
6秒前
6秒前
Hh完成签到,获得积分10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246