生物
MAPK/ERK通路
细胞生物学
蛋白激酶A
激酶
昆虫
植物对草食的防御
基因
生态学
遗传学
作者
Kalpesh Yajnik,Shradheya R. R. Gupta,Mansi Taneja,Indrakant K. Singh,Archana Singh
标识
DOI:10.1080/07391102.2023.2263795
摘要
Plant yields are compromised due to abiotic and biotic stresses. A crucial biotic stress instigated by insect attack, is a major concern that limits crop production. To overcome the deleterious effect of herbivory, pesticides are used but long-term usage of pesticides can be harmful to the environment and human health. Understanding the plants' inherent defense mechanism by interpreting the interaction pattern of defense-related proteins and signalling components and manipulating them to strengthen defense status, is one of the alternative approaches of green biotechnology. During insect attack, host plants initiate innumerable signalling pathways to activate defense response; Mitogen Activated Protein Kinase (MAPK) Pathway is a crucial component of signalling pathway that regulate the expression of downstream defense-related genes. MAPK pathway has three components: MAPKKK, MAPKK and MAPK. Earlier studies have shown participation of SIPK and WIPK (MAPKs) as well as MEK2 (MAPKK) during insect infestation and its association with plant defense. However, information on the third component and elucidation of the complete MAPK pathway are still elusive. Therefore, this study aims to identify the unknown component and decipher MAPK pathway in Nicotiana attenuata involved in plant defense against herbivory by identifying herbivory-inducible MAPKKKs and and their interaction with known partners of the MAPK pathway by docking and MD simulation. The possible pathway was predicted to be MAPKKK Na12134/Na04522-MEK2-SIPK/WIPK. Further, validation of the above interaction by in vitro and in vivo methods is highly recommended.Communicated by Ramaswamy H. Sarma.
科研通智能强力驱动
Strongly Powered by AbleSci AI