塔菲尔方程
催化作用
杂原子
介电谱
线性扫描伏安法
电化学
分解水
循环伏安法
过渡金属
无机化学
化学
氢
化学工程
材料科学
电极
物理化学
戒指(化学)
有机化学
光催化
工程类
作者
N. Arunadevi,M. Swathika,Kshitij RB Singh,Ranjana Verma,Shyam S. Pandey,Jay Singh
标识
DOI:10.1016/j.ijhydene.2023.07.305
摘要
Design and fabrication of non-noble metal catalysts for the extensive generation of H2 (hydrogen) gas by water splitting is the upsurging field aiming towards the sustainable environment and need the future clean and green energy. However, scheming and understanding the basic principle regulating the activity of the catalyst is still inexplicable. Although Pt is currently the material of choice owing to its high electrocatalytic activities but need for its high loading and high cost is an intriguing issue needing amicable solution. The hybrid structures of heteroatom-based transition metal complexes are more effective and are cost effective electrocatalysts for hydrogen production. In this proposed work, the electrocatalytic behaviour of alkali (Li+, Na+, K+) and alkaline metal (Ca2+, Sr2+, Ba2+) was figured out along with their synthetic procedure and characterization. Owing to their high complexing ability, ring formation, and bidentate nature, substituted naphthoic acid and aminoguanidine were chosen as bridging ligands. The thermodynamic stability and best catalytic behaviour of synthesized alkali and alkaline earth metals were compared and presented based on electrochemical studies. Linear sweep voltammetry (LSV) curves display excellent activity and Tafel slope was found in the range of 6.38–40 mVdec−1 in 0.5 M H2SO4. The electrochemical impedance spectroscopy (EIS) test was accomplished to recognize the mechanism of HER, and charge transfer resistance was less which indicates that composites are favourable for the hydrogen evolution. The electrochemical surface area (ECSA) was figured by studying the electric double layer capacitance (C dl) and it was found to be 0.377 μFcm2 - 0.143 μFcm2. More prominent ECSA values implies, the target complexes have enhanced electrochemically active/dynamic sites and better hydrogen evolution performance. According to the results, high-performing catalytically active sites are found to be Li [1NA-AMG] metal ions, thus showing a potential method for electrocatalyst engineering. Furthermore, in a volcano plot, the position of the Li [1NA-AMG] metal ions is found to be close to the apex with near thermoneutral catalytic activity. Based on the results, we successfully designed an electrocatalyst as a prospective candidate for hydrogen evolution reaction.
科研通智能强力驱动
Strongly Powered by AbleSci AI