Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning

卷积神经网络 噪音(视频) 计算机科学 人工智能 能见度 深度学习 噪声污染 污染 推论 特征(语言学) 空气污染 采样(信号处理) 模式识别(心理学) 遥感 机器学习 计算机视觉 图像(数学) 降噪 地理 气象学 哲学 生物 滤波器(信号处理) 有机化学 化学 语言学 生态学
作者
Ricky Nathvani,Dhanraj Vishwanath,Sierra Clark,Abosede S. Alli,Emily Muller,Henri Coste,James E. Bennett,James Nimo,Josephine Bedford Moses,Solomon Baah,Allison Hughes,Esra Süel,Antje Barbara Metzler,Theo Rashid,Michael Bräuer,Jill Baumgartner,George Owusu,Samuel Agyei‐Mensah,Raphael E. Arku,Majid Ezzati
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:903: 166168-166168 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.166168
摘要

Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助木木采纳,获得10
3秒前
布鲁斯盖完成签到,获得积分10
5秒前
6秒前
9秒前
李小心应助爱听歌的靖儿采纳,获得10
10秒前
大力便当发布了新的文献求助10
11秒前
12秒前
小武wwwww发布了新的文献求助10
12秒前
能HJY发布了新的文献求助10
12秒前
雷家发布了新的文献求助10
15秒前
15秒前
踏实戒指完成签到,获得积分10
16秒前
18秒前
20秒前
20秒前
大方的自行车完成签到,获得积分10
20秒前
小马想毕业完成签到,获得积分10
21秒前
21秒前
烟花应助小武wwwww采纳,获得10
22秒前
上官若男应助雷家采纳,获得10
22秒前
唐瑾瑜完成签到,获得积分10
22秒前
Iris关注了科研通微信公众号
23秒前
23秒前
24秒前
香蕉觅云应助杜林采纳,获得10
24秒前
qqq发布了新的文献求助10
25秒前
yoon发布了新的文献求助10
27秒前
28秒前
33秒前
在在完成签到 ,获得积分10
33秒前
joy发布了新的文献求助10
34秒前
11完成签到 ,获得积分10
35秒前
qqq完成签到,获得积分10
37秒前
douyq发布了新的文献求助10
39秒前
knn发布了新的文献求助30
39秒前
NexusExplorer应助大力便当采纳,获得10
41秒前
深情安青应助萝卜采纳,获得10
41秒前
开朗月饼发布了新的文献求助20
44秒前
花小生完成签到 ,获得积分10
45秒前
含章可贞完成签到 ,获得积分10
47秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137814
求助须知:如何正确求助?哪些是违规求助? 2788675
关于积分的说明 7788104
捐赠科研通 2445088
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625828
版权声明 601043