Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning

卷积神经网络 噪音(视频) 计算机科学 人工智能 能见度 深度学习 噪声污染 污染 推论 特征(语言学) 空气污染 采样(信号处理) 模式识别(心理学) 遥感 机器学习 计算机视觉 图像(数学) 降噪 地理 气象学 生态学 语言学 哲学 化学 生物 有机化学 滤波器(信号处理)
作者
Ricky Nathvani,Dhanraj Vishwanath,Sierra Clark,Abosede S. Alli,Emily Muller,Henri Coste,James E. Bennett,James Nimo,Josephine Bedford Moses,Solomon Baah,Allison Hughes,Esra Süel,Antje Barbara Metzler,Theo Rashid,Michael Bräuer,Jill Baumgartner,George Owusu,Samuel Agyei‐Mensah,Raphael E. Arku,Majid Ezzati
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:903: 166168-166168 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.166168
摘要

Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
优雅的琳发布了新的文献求助10
1秒前
时光发布了新的文献求助10
1秒前
yuki完成签到,获得积分10
1秒前
南逸然完成签到,获得积分10
1秒前
1秒前
2秒前
HongJiang发布了新的文献求助10
2秒前
2秒前
筱谭完成签到 ,获得积分10
2秒前
guanze完成签到 ,获得积分10
3秒前
zho关闭了zho文献求助
3秒前
ding应助起承转合采纳,获得10
3秒前
4秒前
蛋炒饭不加蛋完成签到,获得积分10
4秒前
酷炫素完成签到,获得积分10
4秒前
阿金发布了新的文献求助10
5秒前
Jasper应助帅气鹭洋采纳,获得10
5秒前
5秒前
明天更好发布了新的文献求助10
5秒前
6秒前
科研通AI5应助小柠檬采纳,获得10
6秒前
YY完成签到,获得积分10
6秒前
7秒前
科研通AI5应助stt采纳,获得10
7秒前
LDM发布了新的文献求助10
7秒前
上官若男应助乐正成危采纳,获得10
8秒前
小二郎应助有魅力傲菡采纳,获得10
8秒前
追寻夜香完成签到,获得积分10
8秒前
青石完成签到,获得积分20
9秒前
9秒前
浩浩大人发布了新的文献求助10
9秒前
白榆发布了新的文献求助10
9秒前
咕噜仔发布了新的文献求助10
10秒前
寒冷书竹发布了新的文献求助10
10秒前
落雨冥完成签到,获得积分10
10秒前
xinchengzhu完成签到,获得积分10
10秒前
10秒前
慕课魔芋完成签到 ,获得积分10
11秒前
11秒前
左丘幼旋1完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678