Beyond here and now: Evaluating pollution estimation across space and time from street view images with deep learning

卷积神经网络 噪音(视频) 计算机科学 人工智能 能见度 深度学习 噪声污染 污染 推论 特征(语言学) 空气污染 采样(信号处理) 模式识别(心理学) 遥感 机器学习 计算机视觉 图像(数学) 降噪 地理 气象学 生态学 语言学 哲学 化学 生物 有机化学 滤波器(信号处理)
作者
Ricky Nathvani,Dhanraj Vishwanath,Sierra Clark,Abosede S. Alli,Emily Muller,Henri Coste,James E. Bennett,James Nimo,Josephine Bedford Moses,Solomon Baah,Allison Hughes,Esra Süel,Antje Barbara Metzler,Theo Rashid,Michael Bräuer,Jill Baumgartner,George Owusu,Samuel Agyei‐Mensah,Raphael E. Arku,Majid Ezzati
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:903: 166168-166168 被引量:3
标识
DOI:10.1016/j.scitotenv.2023.166168
摘要

Advances in computer vision, driven by deep learning, allows for the inference of environmental pollution and its potential sources from images. The spatial and temporal generalisability of image-based pollution models is crucial in their real-world application, but is currently understudied, particularly in low-income countries where infrastructure for measuring the complex patterns of pollution is limited and modelling may therefore provide the most utility. We employed convolutional neural networks (CNNs) for two complementary classification models, in both an end-to-end approach and as an interpretable feature extractor (object detection), to estimate spatially and temporally resolved fine particulate matter (PM2.5) and noise levels in Accra, Ghana. Data used for training the models were from a unique dataset of over 1.6 million images collected over 15 months at 145 representative locations across the city, paired with air and noise measurements. Both end-to-end CNN and object-based approaches surpassed null model benchmarks for predicting PM2.5 and noise at single locations, but performance deteriorated when applied to other locations. Model accuracy diminished when tested on images from locations unseen during training, but improved by sampling a greater number of locations during model training, even if the total quantity of data was reduced. The end-to-end models used characteristics of images associated with atmospheric visibility for predicting PM2.5, and specific objects such as vehicles and people for noise. The results demonstrate the potential and challenges of image-based, spatiotemporal air pollution and noise estimation, and that robust, environmental modelling with images requires integration with traditional sensor networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助dr1nk采纳,获得10
刚刚
易千发布了新的文献求助10
刚刚
明亮面包发布了新的文献求助10
刚刚
狒狒公主发布了新的文献求助10
2秒前
小幸运完成签到,获得积分10
2秒前
科研通AI2S应助萌萌采纳,获得10
2秒前
2秒前
油炸小麻花完成签到,获得积分10
2秒前
无语的井发布了新的文献求助10
3秒前
嘉仔完成签到,获得积分20
3秒前
姜勇发布了新的文献求助10
3秒前
善学以致用应助行仔采纳,获得10
4秒前
lucastse完成签到,获得积分10
4秒前
顺心的雁菡完成签到,获得积分10
5秒前
ZERO发布了新的文献求助10
5秒前
Orange应助simon采纳,获得10
7秒前
稳重以冬完成签到,获得积分10
7秒前
花生仔应助abletoo采纳,获得20
7秒前
李爱国应助唐诗维采纳,获得10
7秒前
8秒前
忧伤的天真完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
阔达的秀发完成签到,获得积分10
10秒前
99完成签到,获得积分10
10秒前
12秒前
12秒前
15秒前
15秒前
17秒前
1762120完成签到,获得积分10
17秒前
唐诗维完成签到,获得积分20
18秒前
李健的小迷弟应助dr1nk采纳,获得10
18秒前
哈哈哈哈发布了新的文献求助10
19秒前
五斤老陈醋完成签到,获得积分10
19秒前
慕青应助小城故事和冰雨采纳,获得10
20秒前
科研123发布了新的文献求助30
20秒前
話膤发布了新的文献求助10
22秒前
23秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011256
求助须知:如何正确求助?哪些是违规求助? 3550992
关于积分的说明 11307020
捐赠科研通 3285194
什么是DOI,文献DOI怎么找? 1810979
邀请新用户注册赠送积分活动 886679
科研通“疑难数据库(出版商)”最低求助积分说明 811596