Reliability analysis of time-dependent problems based on ensemble learning of surrogate models

替代模型 可靠性(半导体) 克里金 计算机科学 替代数据 集成学习 集合预报 机器学习 人工智能 量子力学 物理 非线性系统 功率(物理)
作者
Chunping Zhou,Wei Zheng,Haike Lei,Fangyun Ma,Wei Li
出处
期刊:Multidiscipline Modeling in Materials and Structures [Emerald (MCB UP)]
卷期号:19 (6): 1087-1105 被引量:1
标识
DOI:10.1108/mmms-04-2023-0132
摘要

Purpose Surrogate models are extensively used to substitute real models which are expensive to evaluate in the time-dependent reliability analysis. Normally, different surrogate models have different scopes of application. However, information is often insufficient for analysts to select the most appropriate surrogate model for a specific application. Thus, the result precited by individual surrogate model tends to be suboptimal or even inaccurate. Ensemble model can effectively deal with the above concern. This work aims to study the application of ensemble model for reliability analysis of time-independent problems. Design/methodology/approach In this work, a method of reliability analysis for time-dependent problems based on ensemble learning of surrogate models is developed. The ensemble of surrogate models includes Kriging, radial basis function, and support vector machine. The prediction is approximated by the weighted average model. The ensemble learning of surrogate models is updated by finding and adding the sample points with large prediction errors throughout the entire procedure. Findings The effectiveness of the proposed method is verified by several examples. The results show that the ensemble of surrogate models can effectively propagate the uncertainty of time-varying problems, and evaluate the reliability with high prediction accuracy and computational efficiency. Originality/value This work proposes an adaptive learning framework for the uncertainty propagation of time-dependent problems based on the ensemble of surrogate models. Compared with individual surrogate models, the ensemble model not only saves the effort of selecting an appropriate surrogate model especially when the knowledge of unknown problem is lacking, but also improves the prediction accuracy and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蛋白完成签到,获得积分10
刚刚
刚刚
1秒前
111完成签到,获得积分10
2秒前
时尚的青丝完成签到,获得积分10
2秒前
安之于数发布了新的文献求助30
2秒前
3秒前
上官若男应助Lee采纳,获得10
3秒前
谦让鹏涛发布了新的文献求助10
3秒前
4秒前
DONG发布了新的文献求助10
4秒前
5秒前
7秒前
dede完成签到,获得积分10
7秒前
Russell完成签到 ,获得积分10
7秒前
谦让鹏涛完成签到,获得积分10
10秒前
11秒前
科研通AI2S应助义气高丽采纳,获得10
11秒前
12秒前
13秒前
15秒前
黄金矿工发布了新的文献求助10
15秒前
18秒前
18秒前
午夜煎饼发布了新的文献求助30
19秒前
神勇乐安完成签到,获得积分10
20秒前
阿rain发布了新的文献求助10
23秒前
24秒前
24秒前
24秒前
26秒前
黙宇循光发布了新的文献求助10
27秒前
29秒前
呼叫外星人完成签到,获得积分10
31秒前
31秒前
32秒前
小方完成签到,获得积分10
33秒前
suijisuiji1发布了新的文献求助10
33秒前
科研天王发布了新的文献求助10
34秒前
34秒前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207447
求助须知:如何正确求助?哪些是违规求助? 2856771
关于积分的说明 8107203
捐赠科研通 2522094
什么是DOI,文献DOI怎么找? 1355367
科研通“疑难数据库(出版商)”最低求助积分说明 642208
邀请新用户注册赠送积分活动 613489