Reliability analysis of time-dependent problems based on ensemble learning of surrogate models

替代模型 可靠性(半导体) 克里金 计算机科学 替代数据 集成学习 集合预报 机器学习 人工智能 功率(物理) 物理 量子力学 非线性系统
作者
Chunping Zhou,Wei Zheng,Haike Lei,Fangyun Ma,Wei Li
出处
期刊:Multidiscipline Modeling in Materials and Structures [Brill]
卷期号:19 (6): 1087-1105 被引量:1
标识
DOI:10.1108/mmms-04-2023-0132
摘要

Purpose Surrogate models are extensively used to substitute real models which are expensive to evaluate in the time-dependent reliability analysis. Normally, different surrogate models have different scopes of application. However, information is often insufficient for analysts to select the most appropriate surrogate model for a specific application. Thus, the result precited by individual surrogate model tends to be suboptimal or even inaccurate. Ensemble model can effectively deal with the above concern. This work aims to study the application of ensemble model for reliability analysis of time-independent problems. Design/methodology/approach In this work, a method of reliability analysis for time-dependent problems based on ensemble learning of surrogate models is developed. The ensemble of surrogate models includes Kriging, radial basis function, and support vector machine. The prediction is approximated by the weighted average model. The ensemble learning of surrogate models is updated by finding and adding the sample points with large prediction errors throughout the entire procedure. Findings The effectiveness of the proposed method is verified by several examples. The results show that the ensemble of surrogate models can effectively propagate the uncertainty of time-varying problems, and evaluate the reliability with high prediction accuracy and computational efficiency. Originality/value This work proposes an adaptive learning framework for the uncertainty propagation of time-dependent problems based on the ensemble of surrogate models. Compared with individual surrogate models, the ensemble model not only saves the effort of selecting an appropriate surrogate model especially when the knowledge of unknown problem is lacking, but also improves the prediction accuracy and computational efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
米娅完成签到,获得积分10
刚刚
结实熠彤完成签到,获得积分20
刚刚
bhkwxdxy完成签到,获得积分10
刚刚
勤劳元瑶完成签到,获得积分10
1秒前
Liooo完成签到 ,获得积分10
1秒前
gao完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
这么年轻压根睡不着完成签到,获得积分10
1秒前
开心蘑菇发布了新的文献求助10
2秒前
2秒前
赵123完成签到,获得积分10
2秒前
暗夜星辰发布了新的文献求助10
3秒前
木子完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
ws发布了新的文献求助10
3秒前
冷酷新柔发布了新的文献求助10
4秒前
4秒前
我ppp发布了新的文献求助30
4秒前
4秒前
庄舒嫒完成签到,获得积分10
5秒前
岸芷汀兰完成签到,获得积分10
5秒前
5秒前
感松发布了新的文献求助10
6秒前
nbing完成签到,获得积分10
6秒前
不敢自称科研人完成签到,获得积分10
6秒前
852应助橘子果酱采纳,获得10
6秒前
汉天完成签到,获得积分10
7秒前
幸运儿橙德加完成签到,获得积分10
7秒前
小黑马完成签到,获得积分10
7秒前
7秒前
8秒前
刘嘉越发布了新的文献求助10
8秒前
SCI55给SCI55的求助进行了留言
8秒前
Larrin发布了新的文献求助10
8秒前
刘辰完成签到 ,获得积分10
9秒前
星星亮完成签到 ,获得积分10
9秒前
丫丫发布了新的文献求助10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016703
求助须知:如何正确求助?哪些是违规求助? 3556823
关于积分的说明 11322708
捐赠科研通 3289505
什么是DOI,文献DOI怎么找? 1812495
邀请新用户注册赠送积分活动 888064
科研通“疑难数据库(出版商)”最低求助积分说明 812086