Machine learning models for orthokeratology lens fitting and axial length prediction

角膜塑形术 均方误差 人工智能 数学 曲线拟合 镜头(地质) 均方预测误差 机器学习 随机森林 回归分析 统计 计算机科学 算法 光学 物理 角膜
作者
Shuai Xu,Xiaoyan Yang,Shuxian Zhang,Xuan Zheng,Zheng Fang,Yin Liu,Hanyu Zhang,Qing Ye,Lihua Li
出处
期刊:Ophthalmic and Physiological Optics [Wiley]
卷期号:43 (6): 1462-1468 被引量:4
标识
DOI:10.1111/opo.13212
摘要

In order to improve the efficiency of orthokeratology (OK) lens fitting and predict the axial length after 1 year of OK lens wear, machine learning models were proposed.Clinical data from 1302 myopic subjects were collected retrospectively, and two machine learning models were implemented. Demographic and corneal topographic data were collected as input variables. The output variables were the parameters of the OK lens and the axial length after 1 year. Eighty percent of input variables was used as the training set and the remaining 20% was used as the validation set. The first alignment curve (AC1) of the OK lenses, deduced using machine learning models and formula calculation, were compared. Multiple regression models (support vector machine, Gaussian process, decision tree and random forest) were used to predict the axial length after 1 year. In addition, we classified data based on lens brand, and carried out more detailed parameter fitting and analysis for spherical and toric OK lenses.The OK lens fitting model showed higher (R2 = 0.93) and lower errors (mean absolute error [MAE] = 0.19, mean square error [MSE] = 0.09) when predicting AC1, compared with the formula calculation (R2 = 0.66, MAE = 0.44, MSE = 0.25). The machine learning model still had high R2 values ranging from 0.91 to 0.96 when considering the brand and design of the OK lenses. Further, the R2 value for the axial length prediction model was 0.94, which indicated that the machine learning model had high accuracy and good robustness.The OK lens fitting model and the axial length prediction model played an important role in guiding OK lens fitting, with high accuracy and robustness in prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿克图尔斯·蒙斯克完成签到,获得积分10
1秒前
2秒前
没有昵称发布了新的文献求助10
4秒前
灵巧的惜灵应助寂寞的灵采纳,获得10
6秒前
7秒前
彭于晏应助监督導部采纳,获得10
7秒前
所所应助小河采纳,获得20
7秒前
阳光完成签到,获得积分10
8秒前
烟花应助李y梅子采纳,获得10
8秒前
9秒前
全若之完成签到,获得积分20
9秒前
天天快乐应助安蓝采纳,获得10
9秒前
9秒前
懒羊羊发布了新的文献求助10
10秒前
奇拉维特完成签到 ,获得积分10
10秒前
yuyukeke完成签到,获得积分10
11秒前
huh完成签到,获得积分10
12秒前
聪慧代天发布了新的文献求助10
13秒前
13秒前
栗栗子完成签到,获得积分10
13秒前
lllll发布了新的文献求助10
14秒前
Lm完成签到,获得积分10
15秒前
努力哥完成签到,获得积分10
16秒前
星点点发布了新的文献求助10
16秒前
lay完成签到,获得积分10
17秒前
17秒前
liuxiner发布了新的文献求助10
18秒前
有且仅有发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
20秒前
爆米花完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
24秒前
坦率的夜玉完成签到,获得积分10
24秒前
24秒前
25秒前
在水一方应助寂寞的灵采纳,获得10
25秒前
Hanah完成签到,获得积分10
26秒前
Mu发布了新的文献求助20
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597