Machine learning models for orthokeratology lens fitting and axial length prediction

角膜塑形术 均方误差 人工智能 数学 曲线拟合 镜头(地质) 均方预测误差 机器学习 随机森林 回归分析 统计 计算机科学 算法 光学 物理 角膜
作者
Shuai Xu,Xiaoyan Yang,Shuxian Zhang,Xuan Zheng,Zheng Fang,Yin Liu,Hanyu Zhang,Qing Ye,Lihua Li
出处
期刊:Ophthalmic and Physiological Optics [Wiley]
卷期号:43 (6): 1462-1468 被引量:4
标识
DOI:10.1111/opo.13212
摘要

In order to improve the efficiency of orthokeratology (OK) lens fitting and predict the axial length after 1 year of OK lens wear, machine learning models were proposed.Clinical data from 1302 myopic subjects were collected retrospectively, and two machine learning models were implemented. Demographic and corneal topographic data were collected as input variables. The output variables were the parameters of the OK lens and the axial length after 1 year. Eighty percent of input variables was used as the training set and the remaining 20% was used as the validation set. The first alignment curve (AC1) of the OK lenses, deduced using machine learning models and formula calculation, were compared. Multiple regression models (support vector machine, Gaussian process, decision tree and random forest) were used to predict the axial length after 1 year. In addition, we classified data based on lens brand, and carried out more detailed parameter fitting and analysis for spherical and toric OK lenses.The OK lens fitting model showed higher (R2 = 0.93) and lower errors (mean absolute error [MAE] = 0.19, mean square error [MSE] = 0.09) when predicting AC1, compared with the formula calculation (R2 = 0.66, MAE = 0.44, MSE = 0.25). The machine learning model still had high R2 values ranging from 0.91 to 0.96 when considering the brand and design of the OK lenses. Further, the R2 value for the axial length prediction model was 0.94, which indicated that the machine learning model had high accuracy and good robustness.The OK lens fitting model and the axial length prediction model played an important role in guiding OK lens fitting, with high accuracy and robustness in prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强丹雪完成签到,获得积分10
1秒前
3秒前
5秒前
WZ0904发布了新的文献求助10
7秒前
狂野静曼完成签到 ,获得积分10
8秒前
武映易完成签到 ,获得积分10
10秒前
zzz发布了新的文献求助10
11秒前
12秒前
大蒜味酸奶钊完成签到 ,获得积分10
12秒前
鱼宇纸完成签到 ,获得积分10
12秒前
LEE完成签到,获得积分20
12秒前
12秒前
Ava应助无限的绿真采纳,获得10
14秒前
小马甲应助xiongdi521采纳,获得10
14秒前
科研通AI5应助陶醉觅夏采纳,获得200
17秒前
憨鬼憨切发布了新的文献求助10
17秒前
17秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
19秒前
20秒前
21秒前
hh应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
Ava应助科研通管家采纳,获得10
21秒前
Eva完成签到,获得积分10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
爆米花应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
搜集达人应助科研通管家采纳,获得10
22秒前
思源应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
清爽老九应助科研通管家采纳,获得20
22秒前
传奇3应助科研通管家采纳,获得10
22秒前
greenPASS666发布了新的文献求助10
22秒前
涂欣桐应助科研通管家采纳,获得10
22秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
secbox完成签到,获得积分10
23秒前
刘哈哈发布了新的文献求助30
23秒前
xyzdmmm完成签到,获得积分10
24秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849