Machine learning models for orthokeratology lens fitting and axial length prediction

角膜塑形术 均方误差 人工智能 数学 曲线拟合 镜头(地质) 均方预测误差 机器学习 随机森林 回归分析 统计 计算机科学 算法 光学 物理 角膜
作者
Shuai Xu,Xiaoyan Yang,Shuxian Zhang,Xuan Zheng,Zheng Fang,Yin Liu,Hanyu Zhang,Qing Ye,Lihua Li
出处
期刊:Ophthalmic and Physiological Optics [Wiley]
卷期号:43 (6): 1462-1468 被引量:3
标识
DOI:10.1111/opo.13212
摘要

In order to improve the efficiency of orthokeratology (OK) lens fitting and predict the axial length after 1 year of OK lens wear, machine learning models were proposed.Clinical data from 1302 myopic subjects were collected retrospectively, and two machine learning models were implemented. Demographic and corneal topographic data were collected as input variables. The output variables were the parameters of the OK lens and the axial length after 1 year. Eighty percent of input variables was used as the training set and the remaining 20% was used as the validation set. The first alignment curve (AC1) of the OK lenses, deduced using machine learning models and formula calculation, were compared. Multiple regression models (support vector machine, Gaussian process, decision tree and random forest) were used to predict the axial length after 1 year. In addition, we classified data based on lens brand, and carried out more detailed parameter fitting and analysis for spherical and toric OK lenses.The OK lens fitting model showed higher (R2 = 0.93) and lower errors (mean absolute error [MAE] = 0.19, mean square error [MSE] = 0.09) when predicting AC1, compared with the formula calculation (R2 = 0.66, MAE = 0.44, MSE = 0.25). The machine learning model still had high R2 values ranging from 0.91 to 0.96 when considering the brand and design of the OK lenses. Further, the R2 value for the axial length prediction model was 0.94, which indicated that the machine learning model had high accuracy and good robustness.The OK lens fitting model and the axial length prediction model played an important role in guiding OK lens fitting, with high accuracy and robustness in prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OCDer发布了新的文献求助10
2秒前
健康豆芽菜完成签到 ,获得积分10
2秒前
Enothan完成签到 ,获得积分10
2秒前
Owen发布了新的文献求助10
2秒前
yongfeng应助直率的柚子采纳,获得10
3秒前
3秒前
4秒前
肖一甜发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
派大星完成签到 ,获得积分10
10秒前
11秒前
12秒前
MJX完成签到,获得积分10
12秒前
Hanson完成签到,获得积分10
13秒前
shoanofna发布了新的文献求助10
13秒前
科视完成签到,获得积分10
13秒前
Ls完成签到 ,获得积分10
16秒前
17秒前
17秒前
阿池完成签到,获得积分10
17秒前
无语的从云完成签到,获得积分10
18秒前
19秒前
飞鱼完成签到,获得积分10
19秒前
大勺完成签到 ,获得积分10
19秒前
王正一完成签到 ,获得积分10
20秒前
月屿完成签到 ,获得积分10
20秒前
21秒前
大模型应助小号采纳,获得10
21秒前
22秒前
样子完成签到,获得积分10
22秒前
jaslek发布了新的文献求助10
22秒前
破伤疯完成签到 ,获得积分10
22秒前
酷炫非常完成签到 ,获得积分10
24秒前
宝川发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137230
求助须知:如何正确求助?哪些是违规求助? 2788312
关于积分的说明 7785628
捐赠科研通 2444330
什么是DOI,文献DOI怎么找? 1299894
科研通“疑难数据库(出版商)”最低求助积分说明 625639
版权声明 601023