Characterizing the variability of footstep-induced structural vibrations for open-world person identification

鉴定(生物学) 模式 计算机科学 人机交互 可穿戴计算机 数据科学 可穿戴技术 计算机安全 工程类 人工智能 社会科学 植物 社会学 生物 嵌入式系统
作者
Yiwen Dong,Jonathon Fagert,Hae Young Noh
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:204: 110756-110756 被引量:5
标识
DOI:10.1016/j.ymssp.2023.110756
摘要

Person identification is important in providing personalized services in smart buildings. Many existing studies focus on closed-world person identification, which only identifies a fixed group of people who have training data; however, they assume everyone has pre-collected data, which is not practical in real-world scenarios when newcomers are present. To overcome this drawback, open-world person identification recognizes both newcomers and registered people, which opens up new opportunities for smart building applications that involve newcomers, such as smart visitor management, customized retail, personalized health monitoring, and public emergency assistance. To achieve this, structural vibration sensing has various advantages when compared with the existing sensing modalities (e.g., cameras, wearables, and pressure sensors) because it only needs sparsely deployed sensors mounted on the floor, does not require people to carry devices, and is perceived as more privacy-friendly. However, one fundamental challenge in analyzing footstep-induced structural vibration data is its high variability due to the structural heterogeneity and the footstep variations. Therefore, it is difficult to distinguish different people given this high variability within each person, and it is more challenging to recognize a new person as that data is unobserved before. In this paper, we characterize the variability in footstep-induced structural vibration to develop an open-world person identification framework. Specifically, we address three variability challenges in developing our method. First, the high variability within each person comes from multiple sources that are entangled in the vibration signals, and thus is difficult to be decomposed and reduced. Secondly, the distribution of features extracted from the vibration signals is irregularly shaped, and therefore is difficult to model. Moreover, the identity of the next person is correlated with the previous observations, which makes the identification process more complicated. To overcome these challenges, we first characterize multiple variability sources and design a transformation function that results in signal features that are less variable within one person and more separable between different people. We then develop a modified Chinese Restaurant Process (mCRP) for nonparametric Bayesian modeling to capture the irregularly shaped feature patterns both from local and global perspectives. Finally, we design an adaptive hyperparameter α that represents the prior probability of newcomers at each observation, which keeps updating depending on the time, location, and previous predictions. We evaluate our approach through walking experiments with 20 people across 2 different structures. With only 1 pre-recorded person at each structure, our method achieves up to 92.3% average accuracy with randomly appearing newcomers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天123完成签到 ,获得积分10
1秒前
fgpa发布了新的文献求助10
1秒前
2秒前
yalin完成签到,获得积分10
2秒前
btb完成签到,获得积分10
3秒前
小王发布了新的文献求助100
4秒前
acuis发布了新的文献求助10
4秒前
传奇3应助Ryouji采纳,获得10
5秒前
5秒前
Rosemary发布了新的文献求助10
5秒前
华仔应助帝国之花采纳,获得50
5秒前
乐乐应助尔尔采纳,获得30
5秒前
等月光发布了新的文献求助10
6秒前
QianQianONE完成签到,获得积分10
6秒前
7秒前
kathleen完成签到,获得积分10
7秒前
哦吼完成签到,获得积分10
8秒前
8秒前
一科研土豆完成签到,获得积分10
8秒前
JamesPei应助小王采纳,获得10
9秒前
wyao发布了新的文献求助30
10秒前
田様应助xuleiman采纳,获得10
11秒前
12秒前
英俊的铭应助YZQ采纳,获得20
14秒前
14秒前
科研通AI6.1应助JunHan采纳,获得10
15秒前
wczkzzyfxh完成签到,获得积分10
15秒前
Karry发布了新的文献求助10
15秒前
icecreammm发布了新的文献求助10
17秒前
18秒前
18秒前
尔尔发布了新的文献求助30
19秒前
有趣的银发布了新的文献求助100
19秒前
量子星尘发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
20秒前
彭于晏应助饭饭采纳,获得10
21秒前
汉堡包应助俭朴的月亮采纳,获得10
22秒前
xuleiman发布了新的文献求助10
23秒前
FoxLY完成签到,获得积分10
23秒前
Dr.Tang完成签到 ,获得积分10
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745368
求助须知:如何正确求助?哪些是违规求助? 5425346
关于积分的说明 15352788
捐赠科研通 4885424
什么是DOI,文献DOI怎么找? 2626604
邀请新用户注册赠送积分活动 1575254
关于科研通互助平台的介绍 1531987