Characterizing the variability of footstep-induced structural vibrations for open-world person identification

鉴定(生物学) 模式 计算机科学 人机交互 可穿戴计算机 数据科学 可穿戴技术 计算机安全 工程类 人工智能 社会科学 植物 社会学 生物 嵌入式系统
作者
Yiwen Dong,Jonathon Fagert,Hae Young Noh
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:204: 110756-110756 被引量:5
标识
DOI:10.1016/j.ymssp.2023.110756
摘要

Person identification is important in providing personalized services in smart buildings. Many existing studies focus on closed-world person identification, which only identifies a fixed group of people who have training data; however, they assume everyone has pre-collected data, which is not practical in real-world scenarios when newcomers are present. To overcome this drawback, open-world person identification recognizes both newcomers and registered people, which opens up new opportunities for smart building applications that involve newcomers, such as smart visitor management, customized retail, personalized health monitoring, and public emergency assistance. To achieve this, structural vibration sensing has various advantages when compared with the existing sensing modalities (e.g., cameras, wearables, and pressure sensors) because it only needs sparsely deployed sensors mounted on the floor, does not require people to carry devices, and is perceived as more privacy-friendly. However, one fundamental challenge in analyzing footstep-induced structural vibration data is its high variability due to the structural heterogeneity and the footstep variations. Therefore, it is difficult to distinguish different people given this high variability within each person, and it is more challenging to recognize a new person as that data is unobserved before. In this paper, we characterize the variability in footstep-induced structural vibration to develop an open-world person identification framework. Specifically, we address three variability challenges in developing our method. First, the high variability within each person comes from multiple sources that are entangled in the vibration signals, and thus is difficult to be decomposed and reduced. Secondly, the distribution of features extracted from the vibration signals is irregularly shaped, and therefore is difficult to model. Moreover, the identity of the next person is correlated with the previous observations, which makes the identification process more complicated. To overcome these challenges, we first characterize multiple variability sources and design a transformation function that results in signal features that are less variable within one person and more separable between different people. We then develop a modified Chinese Restaurant Process (mCRP) for nonparametric Bayesian modeling to capture the irregularly shaped feature patterns both from local and global perspectives. Finally, we design an adaptive hyperparameter α that represents the prior probability of newcomers at each observation, which keeps updating depending on the time, location, and previous predictions. We evaluate our approach through walking experiments with 20 people across 2 different structures. With only 1 pre-recorded person at each structure, our method achieves up to 92.3% average accuracy with randomly appearing newcomers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Somnolence咩完成签到,获得积分10
2秒前
tangzanwayne发布了新的文献求助10
4秒前
英勇的红酒完成签到 ,获得积分10
4秒前
严西完成签到,获得积分10
5秒前
hah发布了新的文献求助30
5秒前
ouyekk完成签到,获得积分10
5秒前
NatureLee完成签到 ,获得积分10
5秒前
明天过后完成签到,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
求知者1701完成签到,获得积分10
7秒前
马尔尼菲蓝状菌完成签到,获得积分10
8秒前
吃饱再睡完成签到 ,获得积分10
8秒前
zhangyujin完成签到,获得积分10
8秒前
狂野的海完成签到 ,获得积分10
9秒前
TEMPO完成签到 ,获得积分10
9秒前
拉长的芷烟完成签到 ,获得积分10
10秒前
11秒前
一氧化二氢完成签到,获得积分10
12秒前
你好啊完成签到,获得积分10
12秒前
甜蜜滑板完成签到,获得积分10
14秒前
11完成签到 ,获得积分10
14秒前
青青草完成签到,获得积分10
15秒前
叶123完成签到,获得积分10
15秒前
範範完成签到,获得积分10
15秒前
阿轰关注了科研通微信公众号
17秒前
iNk应助Jerry采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
羊羊羊完成签到 ,获得积分10
21秒前
陈老太完成签到 ,获得积分10
21秒前
22秒前
合适的天奇完成签到,获得积分10
22秒前
Jabowoo完成签到,获得积分10
23秒前
三伏天完成签到,获得积分10
23秒前
55完成签到,获得积分10
25秒前
831143完成签到 ,获得积分0
25秒前
一朵小鲜花儿完成签到,获得积分10
25秒前
射天狼发布了新的文献求助20
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613473
求助须知:如何正确求助?哪些是违规求助? 4018149
关于积分的说明 12437211
捐赠科研通 3700700
什么是DOI,文献DOI怎么找? 2040870
邀请新用户注册赠送积分活动 1073600
科研通“疑难数据库(出版商)”最低求助积分说明 957258