Characterizing the variability of footstep-induced structural vibrations for open-world person identification

鉴定(生物学) 模式 计算机科学 人机交互 可穿戴计算机 数据科学 可穿戴技术 计算机安全 工程类 人工智能 社会科学 植物 生物 社会学 嵌入式系统
作者
Yiwen Dong,Jonathon Fagert,Hae Young Noh
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:204: 110756-110756 被引量:5
标识
DOI:10.1016/j.ymssp.2023.110756
摘要

Person identification is important in providing personalized services in smart buildings. Many existing studies focus on closed-world person identification, which only identifies a fixed group of people who have training data; however, they assume everyone has pre-collected data, which is not practical in real-world scenarios when newcomers are present. To overcome this drawback, open-world person identification recognizes both newcomers and registered people, which opens up new opportunities for smart building applications that involve newcomers, such as smart visitor management, customized retail, personalized health monitoring, and public emergency assistance. To achieve this, structural vibration sensing has various advantages when compared with the existing sensing modalities (e.g., cameras, wearables, and pressure sensors) because it only needs sparsely deployed sensors mounted on the floor, does not require people to carry devices, and is perceived as more privacy-friendly. However, one fundamental challenge in analyzing footstep-induced structural vibration data is its high variability due to the structural heterogeneity and the footstep variations. Therefore, it is difficult to distinguish different people given this high variability within each person, and it is more challenging to recognize a new person as that data is unobserved before. In this paper, we characterize the variability in footstep-induced structural vibration to develop an open-world person identification framework. Specifically, we address three variability challenges in developing our method. First, the high variability within each person comes from multiple sources that are entangled in the vibration signals, and thus is difficult to be decomposed and reduced. Secondly, the distribution of features extracted from the vibration signals is irregularly shaped, and therefore is difficult to model. Moreover, the identity of the next person is correlated with the previous observations, which makes the identification process more complicated. To overcome these challenges, we first characterize multiple variability sources and design a transformation function that results in signal features that are less variable within one person and more separable between different people. We then develop a modified Chinese Restaurant Process (mCRP) for nonparametric Bayesian modeling to capture the irregularly shaped feature patterns both from local and global perspectives. Finally, we design an adaptive hyperparameter α that represents the prior probability of newcomers at each observation, which keeps updating depending on the time, location, and previous predictions. We evaluate our approach through walking experiments with 20 people across 2 different structures. With only 1 pre-recorded person at each structure, our method achieves up to 92.3% average accuracy with randomly appearing newcomers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子发布了新的文献求助10
刚刚
领导范儿应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
5秒前
明钟达完成签到 ,获得积分10
13秒前
byyyy完成签到,获得积分10
16秒前
高高的哈密瓜完成签到 ,获得积分10
20秒前
Rondab应助橙汁采纳,获得10
23秒前
读书的时候完成签到,获得积分10
25秒前
颜云尔完成签到,获得积分10
36秒前
孤独雨梅完成签到,获得积分10
39秒前
woobinhua完成签到 ,获得积分10
39秒前
雪落你看不见完成签到,获得积分10
41秒前
十月天秤完成签到,获得积分0
42秒前
依文完成签到,获得积分20
42秒前
ymr完成签到 ,获得积分10
43秒前
哦哦哦完成签到 ,获得积分10
44秒前
jzmupyj完成签到,获得积分10
44秒前
大橙子发布了新的文献求助10
47秒前
xdlongchem完成签到,获得积分10
48秒前
量子星尘发布了新的文献求助10
50秒前
小梦完成签到,获得积分10
51秒前
xuhang完成签到,获得积分10
51秒前
ZSHAN完成签到,获得积分10
52秒前
美满的机器猫完成签到,获得积分10
55秒前
王小磊完成签到,获得积分10
59秒前
谢花花完成签到 ,获得积分10
1分钟前
1分钟前
瓦罐完成签到 ,获得积分10
1分钟前
扁舟灬完成签到,获得积分10
1分钟前
Cpp完成签到 ,获得积分10
1分钟前
贤惠的老黑完成签到 ,获得积分10
1分钟前
ame1120发布了新的文献求助10
1分钟前
倦梦还完成签到,获得积分10
1分钟前
Sunrise完成签到,获得积分10
1分钟前
yyyy发布了新的文献求助10
1分钟前
自觉柠檬完成签到 ,获得积分10
1分钟前
ergatoid完成签到,获得积分10
1分钟前
Hao完成签到,获得积分10
1分钟前
月亮煮粥完成签到,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022