Characterizing the variability of footstep-induced structural vibrations for open-world person identification

鉴定(生物学) 模式 计算机科学 人机交互 可穿戴计算机 数据科学 可穿戴技术 计算机安全 工程类 人工智能 社会科学 植物 社会学 生物 嵌入式系统
作者
Yiwen Dong,Jonathon Fagert,Hae Young Noh
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:204: 110756-110756 被引量:5
标识
DOI:10.1016/j.ymssp.2023.110756
摘要

Person identification is important in providing personalized services in smart buildings. Many existing studies focus on closed-world person identification, which only identifies a fixed group of people who have training data; however, they assume everyone has pre-collected data, which is not practical in real-world scenarios when newcomers are present. To overcome this drawback, open-world person identification recognizes both newcomers and registered people, which opens up new opportunities for smart building applications that involve newcomers, such as smart visitor management, customized retail, personalized health monitoring, and public emergency assistance. To achieve this, structural vibration sensing has various advantages when compared with the existing sensing modalities (e.g., cameras, wearables, and pressure sensors) because it only needs sparsely deployed sensors mounted on the floor, does not require people to carry devices, and is perceived as more privacy-friendly. However, one fundamental challenge in analyzing footstep-induced structural vibration data is its high variability due to the structural heterogeneity and the footstep variations. Therefore, it is difficult to distinguish different people given this high variability within each person, and it is more challenging to recognize a new person as that data is unobserved before. In this paper, we characterize the variability in footstep-induced structural vibration to develop an open-world person identification framework. Specifically, we address three variability challenges in developing our method. First, the high variability within each person comes from multiple sources that are entangled in the vibration signals, and thus is difficult to be decomposed and reduced. Secondly, the distribution of features extracted from the vibration signals is irregularly shaped, and therefore is difficult to model. Moreover, the identity of the next person is correlated with the previous observations, which makes the identification process more complicated. To overcome these challenges, we first characterize multiple variability sources and design a transformation function that results in signal features that are less variable within one person and more separable between different people. We then develop a modified Chinese Restaurant Process (mCRP) for nonparametric Bayesian modeling to capture the irregularly shaped feature patterns both from local and global perspectives. Finally, we design an adaptive hyperparameter α that represents the prior probability of newcomers at each observation, which keeps updating depending on the time, location, and previous predictions. We evaluate our approach through walking experiments with 20 people across 2 different structures. With only 1 pre-recorded person at each structure, our method achieves up to 92.3% average accuracy with randomly appearing newcomers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
祭天丶易木完成签到,获得积分10
2秒前
2秒前
xiaobao完成签到,获得积分10
2秒前
我桽完成签到 ,获得积分10
2秒前
yy发布了新的文献求助10
2秒前
半芹完成签到,获得积分10
2秒前
勤恳马里奥完成签到,获得积分0
2秒前
七里海完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
不安的朋友完成签到,获得积分10
4秒前
无名发布了新的文献求助10
4秒前
jx发布了新的文献求助10
4秒前
5秒前
flsqw完成签到,获得积分10
6秒前
messyknots完成签到,获得积分10
6秒前
巴哒完成签到,获得积分10
6秒前
agou发布了新的文献求助10
6秒前
波比冰苏打完成签到,获得积分10
7秒前
梦会故乡完成签到,获得积分10
7秒前
8秒前
令狐新竹完成签到 ,获得积分10
8秒前
Alina1874完成签到,获得积分10
8秒前
风趣夜云发布了新的文献求助10
8秒前
LSD完成签到,获得积分10
9秒前
赵爽爽完成签到 ,获得积分10
9秒前
陈博士完成签到,获得积分10
10秒前
10秒前
万柏祺完成签到,获得积分10
10秒前
Zhu XY.发布了新的文献求助10
11秒前
科研通AI2S应助felix采纳,获得10
12秒前
无私尔云应助felix采纳,获得10
12秒前
无私尔云应助felix采纳,获得10
12秒前
FashionBoy应助felix采纳,获得10
12秒前
桐桐应助gszy1975采纳,获得10
12秒前
曾经的慕灵完成签到,获得积分10
12秒前
13秒前
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012