State of Charge Estimation for Lithium-ion Battery Pack with Selected Representative Cells

荷电状态 电池组 电池(电) 计算机科学 电气化 多收费 卡尔曼滤波器 稳健性(进化) 冗余(工程) 锂离子电池 扩展卡尔曼滤波器 工程类 电气工程 人工智能 功率(物理) 化学 物理 操作系统 基因 量子力学 生物化学
作者
Xingtao Liu,Weiyi Xia,Siyuan Liu,Mingqiang Lin,Ji Wu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2023.3314532
摘要

Electric vehicles (EVs) are instrumental in driving the transition towards transportation electrification, achieving carbon peak targets, and striving for carbon neutrality. Within the EV ecosystem, battery packs serve as vital energy storage systems. However, existing research has primarily concentrated on modeling and estimating the state of individual battery cells, posing challenges when applying these models directly to battery packs due to their inherent complexity and the variability among cells within them. Consequently, limited efforts have been made to explore alternative models and methods to improve estimation accuracy while reducing complexity. Here, we propose a novel data-driven and filter-fused algorithm for estimating battery packs’ state of charge (SOC). Firstly, representative cells are selected to minimize data redundancy and system complexity while accurately representing the pack’s state. Then, the long short-term memory network is used to establish a mapping between SOC and electrical measurements from the pack. Finally, we integrate the extended Kalman filter to smooth the output, creating a closed-loop structure that enhances estimation accuracy. Experimental results demonstrate the efficacy of the proposed method in accurately estimating the SOC for battery packs. Furthermore, the method exhibits robustness and generalization ability, which indicates its potential for practical application in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dreamer0422发布了新的文献求助10
刚刚
义气的牛青完成签到,获得积分10
1秒前
脑洞疼应助涓涓采纳,获得10
4秒前
4秒前
5秒前
agent完成签到 ,获得积分10
7秒前
青花发布了新的文献求助20
8秒前
9秒前
小二郎应助Cathy采纳,获得10
10秒前
10秒前
antonia1031应助曹志毅采纳,获得10
13秒前
13秒前
13秒前
蓦回发布了新的文献求助10
14秒前
15秒前
18秒前
19秒前
xumingqing发布了新的文献求助10
20秒前
kls完成签到,获得积分10
21秒前
tomorrow505应助hunter采纳,获得20
21秒前
柒柒发布了新的文献求助10
22秒前
CYY完成签到 ,获得积分20
22秒前
培培完成签到 ,获得积分10
23秒前
自由自在发布了新的文献求助20
25秒前
充电宝应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
爆米花应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
852应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
大头会发顶刊的耶完成签到,获得积分10
31秒前
匿蝶发布了新的文献求助10
32秒前
34秒前
w_sea应助水云间采纳,获得10
36秒前
zpp完成签到 ,获得积分10
36秒前
37秒前
鱼饼完成签到 ,获得积分10
38秒前
Ava应助cc2001采纳,获得10
38秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329559
求助须知:如何正确求助?哪些是违规求助? 2959152
关于积分的说明 8594441
捐赠科研通 2637675
什么是DOI,文献DOI怎么找? 1443672
科研通“疑难数据库(出版商)”最低求助积分说明 668794
邀请新用户注册赠送积分活动 656231