State of Charge Estimation for Lithium-Ion Battery Pack With Selected Representative Cells

荷电状态 电池组 电池(电) 计算机科学 电气化 多收费 卡尔曼滤波器 稳健性(进化) 冗余(工程) 锂离子电池 扩展卡尔曼滤波器 工程类 电气工程 人工智能 功率(物理) 化学 物理 量子力学 生物化学 基因 操作系统
作者
Xingtao Liu,Wenlong Xia,Siyuan Li,Mingqiang Lin,Ji Wu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (2): 4107-4118 被引量:11
标识
DOI:10.1109/tte.2023.3314532
摘要

Electric vehicles (EVs) are instrumental in driving the transition towards transportation electrification, achieving carbon peak targets, and striving for carbon neutrality. Within the EV ecosystem, battery packs serve as vital energy storage systems. However, existing research has primarily concentrated on modeling and estimating the state of individual battery cells, posing challenges when applying these models directly to battery packs due to their inherent complexity and the variability among cells within them. Consequently, limited efforts have been made to explore alternative models and methods to improve estimation accuracy while reducing complexity. Here, we propose a novel data-driven and filter-fused algorithm for estimating battery packs' state of charge (SOC). Firstly, representative cells are selected to minimize data redundancy and system complexity while accurately representing the pack's state. Then, the long short-term memory network is used to establish a mapping between SOC and electrical measurements from the pack. Finally, we integrate the extended Kalman filter to smooth the output, creating a closed-loop structure that enhances estimation accuracy. Experimental results demonstrate the efficacy of the proposed method in accurately estimating the SOC for battery packs. Furthermore, the method exhibits robustness and generalization ability, which indicates its potential for practical application in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liarliar38完成签到,获得积分10
刚刚
科研通AI6应助nnnaaaa采纳,获得10
2秒前
2秒前
田様应助qiudaoyv11采纳,获得10
2秒前
3秒前
3秒前
炙热芯完成签到,获得积分10
3秒前
Earrr发布了新的文献求助10
4秒前
4秒前
Yang完成签到,获得积分20
7秒前
7秒前
蔡问钰完成签到,获得积分10
7秒前
Gloyxtg发布了新的文献求助10
8秒前
科研通AI6应助JJJ采纳,获得10
8秒前
sss完成签到,获得积分10
8秒前
淡淡的白羊完成签到 ,获得积分10
9秒前
个性语堂发布了新的文献求助10
9秒前
9秒前
10秒前
lx123发布了新的文献求助30
10秒前
li发布了新的文献求助10
10秒前
11完成签到,获得积分10
10秒前
10秒前
Yz发布了新的文献求助10
10秒前
11秒前
水何澹澹完成签到,获得积分0
11秒前
王思远发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
adi完成签到,获得积分10
14秒前
asdfzxcv应助Earrr采纳,获得10
14秒前
尤之尤之发布了新的文献求助10
15秒前
aaa123发布了新的文献求助10
15秒前
Sommer完成签到 ,获得积分10
17秒前
Gengen完成签到 ,获得积分10
18秒前
18秒前
万万完成签到,获得积分10
18秒前
哭唧唧发布了新的文献求助10
18秒前
Yang发布了新的文献求助50
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637511
求助须知:如何正确求助?哪些是违规求助? 4743448
关于积分的说明 14999325
捐赠科研通 4795636
什么是DOI,文献DOI怎么找? 2562096
邀请新用户注册赠送积分活动 1521574
关于科研通互助平台的介绍 1481559