Feature Pyramid Fusion Network for Hyperspectral Pansharpening

全色胶片 棱锥(几何) 人工智能 计算机科学 高光谱成像 图像分辨率 特征(语言学) 模式识别(心理学) 代表(政治) 图像融合 图像(数学) 计算机视觉 分辨率(逻辑) 多光谱图像 卷积神经网络 数学 哲学 几何学 政治 法学 语言学 政治学
作者
Wenqian Dong,Yihan Yang,Jiahui Qu,Yunsong Li,Yufei Yang,Xiuping Jia
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:5
标识
DOI:10.1109/tnnls.2023.3325887
摘要

Hyperspectral (HS) pansharpening aims at fusing an observed HS image with a panchromatic (PAN) image, to produce an image with the high spectral resolution of the former and the high spatial resolution of the latter. Most of the existing convolutional neural networks (CNNs)-based pansharpening methods reconstruct the desired high-resolution image from the encoded low-resolution (LR) representation. However, the encoded LR representation captures semantic information of the image and is inadequate in reconstructing fine details. How to effectively extract high-resolution and LR representations for high-resolution image reconstruction is the main objective of this article. In this article, we propose a feature pyramid fusion network (FPFNet) for pansharpening, which permits the network to extract multiresolution representations from PAN and HS images in two branches. The PAN branch starts from the high-resolution stream that maintains the spatial resolution of the PAN image and gradually adds LR streams in parallel. The structure of the HS branch remains highly consistent with that of the PAN branch, but starts with the LR stream and gradually adds high-resolution streams. The representations with corresponding resolutions of PAN and HS branches are fused and gradually upsampled in a coarse to fine manner to reconstruct the high-resolution HS image. Experimental results on three datasets demonstrate the significant superiority of the proposed FPFNet over the state-of-the-art methods in terms of both qualitative and quantitative comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LCM666发布了新的文献求助10
1秒前
小小阿杰完成签到,获得积分10
1秒前
张两丰完成签到,获得积分10
1秒前
霹雳小土豆-完成签到,获得积分10
3秒前
4秒前
张雯雯发布了新的文献求助10
4秒前
5秒前
YGTRECE完成签到,获得积分20
6秒前
上官若男应助1111采纳,获得10
6秒前
6秒前
8秒前
小马甲应助黄嘟嘟采纳,获得10
9秒前
10秒前
13秒前
shidewu完成签到,获得积分10
13秒前
雨雪多下完成签到,获得积分20
14秒前
千幻完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
19秒前
咕噜咕噜发布了新的文献求助10
19秒前
20秒前
20秒前
隐形曼青应助林子青采纳,获得10
20秒前
Sccj完成签到,获得积分10
23秒前
科研助手6发布了新的文献求助10
24秒前
prince8891发布了新的文献求助10
24秒前
1111发布了新的文献求助10
24秒前
森森完成签到,获得积分10
25秒前
25秒前
ye完成签到,获得积分10
25秒前
咕噜咕噜完成签到,获得积分10
25秒前
云溪完成签到,获得积分10
25秒前
djiwisksk66应助汤绮菱采纳,获得10
26秒前
ZH完成签到 ,获得积分10
28秒前
西出阳关完成签到,获得积分10
28秒前
28秒前
伍小胖完成签到 ,获得积分10
29秒前
1111完成签到,获得积分20
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993