Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics‐Clinical Integration Approach

列线图 医学 接收机工作特性 乳腺癌 无线电技术 回顾性队列研究 逻辑回归 肿瘤科 生存分析 Lasso(编程语言) 放射科 内科学 癌症 计算机科学 万维网
作者
Kezhen Li,Juan Ji,Simin Li,Man Yang,Yurou Che,Xu Zhu,Yiyao Zhang,Mei Wang,Zengyi Fang,Liping Luo,Chuan Wu,Xin Lai,Juan Dong,Xinlan Zhang,Na Zhao,Yang Liu,Weidong Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (4): 1206-1217 被引量:14
标识
DOI:10.1002/jmri.28900
摘要

Background Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. Purpose To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. Study Type Retrospective. Population Two hundred forty‐two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC − TLS group (N = 120). Field Strength/Sequence 3.0T; Caipirinha‐Dixon‐TWIST‐volume interpolated breath‐hold sequence for dynamic contrast‐enhanced (DCE) MRI and inversion‐recovery turbo spin echo sequence for T2‐weighted imaging (T2WI). Assessment Three models for differentiating BC + TLS and BC − TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis‐free survival (DMFS), and disease‐free survival (DFS) were compared to evaluate the prognostic value of TLSs. Statistical Tests LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan–Meier method was used to calculate the survival rate. Results The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow‐up time was 52 months. While there was no significant difference in 3‐year OS ( P = 0.22) between BC + TLS and BC − TLS patients, there were significant differences in 3‐year DFS and 3‐year DMFS between the two groups. Data Conclusion The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long‐term disease control rates and better prognoses than those without TLS. Evidence Level 2 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
南小木完成签到,获得积分10
刚刚
宋宋发布了新的文献求助10
1秒前
sota完成签到,获得积分10
1秒前
易安完成签到,获得积分10
1秒前
2秒前
田果完成签到,获得积分20
2秒前
za==完成签到,获得积分10
2秒前
ywb完成签到,获得积分10
3秒前
kingcoming完成签到,获得积分10
3秒前
aragakkl完成签到,获得积分10
4秒前
mojito完成签到,获得积分10
4秒前
mwy发布了新的文献求助10
4秒前
蛋黄派完成签到,获得积分10
5秒前
搜集达人应助小次之山采纳,获得50
5秒前
5秒前
默默白开水完成签到 ,获得积分10
5秒前
KKKK完成签到,获得积分10
6秒前
xcx完成签到,获得积分10
6秒前
7秒前
duke完成签到,获得积分10
7秒前
keyaner完成签到,获得积分10
7秒前
ywb发布了新的文献求助30
8秒前
机智谷蕊完成签到,获得积分10
8秒前
Leung完成签到,获得积分10
9秒前
研友_LJGXgn完成签到,获得积分10
9秒前
泡泡球完成签到,获得积分10
10秒前
张益达完成签到,获得积分10
10秒前
rinki01发布了新的文献求助10
10秒前
CHEN.CHENG完成签到,获得积分10
11秒前
pcr163应助栀初采纳,获得80
11秒前
Jasper应助南至采纳,获得10
11秒前
优秀的乐曲完成签到,获得积分10
11秒前
小余发布了新的文献求助10
12秒前
Jasper应助kang采纳,获得10
13秒前
山260完成签到 ,获得积分10
13秒前
13秒前
打打应助冷傲的水儿采纳,获得10
14秒前
旺旺小仙贝完成签到,获得积分20
14秒前
量子星尘发布了新的文献求助10
15秒前
芒果好高完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582