已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics‐Clinical Integration Approach

列线图 医学 接收机工作特性 乳腺癌 无线电技术 回顾性队列研究 逻辑回归 肿瘤科 生存分析 Lasso(编程语言) 放射科 内科学 癌症 计算机科学 万维网
作者
Kezhen Li,Juan Ji,Simin Li,Man Yang,Yurou Che,Xu Zhu,Yiyao Zhang,Mei Wang,Zengyi Fang,Liping Luo,Chuan Wu,Xin Lai,Juan Dong,Xinlan Zhang,Na Zhao,Yang Liu,Weidong Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (4): 1206-1217 被引量:15
标识
DOI:10.1002/jmri.28900
摘要

Background Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. Purpose To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. Study Type Retrospective. Population Two hundred forty‐two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC − TLS group (N = 120). Field Strength/Sequence 3.0T; Caipirinha‐Dixon‐TWIST‐volume interpolated breath‐hold sequence for dynamic contrast‐enhanced (DCE) MRI and inversion‐recovery turbo spin echo sequence for T2‐weighted imaging (T2WI). Assessment Three models for differentiating BC + TLS and BC − TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis‐free survival (DMFS), and disease‐free survival (DFS) were compared to evaluate the prognostic value of TLSs. Statistical Tests LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan–Meier method was used to calculate the survival rate. Results The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow‐up time was 52 months. While there was no significant difference in 3‐year OS ( P = 0.22) between BC + TLS and BC − TLS patients, there were significant differences in 3‐year DFS and 3‐year DMFS between the two groups. Data Conclusion The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long‐term disease control rates and better prognoses than those without TLS. Evidence Level 2 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星完成签到 ,获得积分10
1秒前
斯文白梦完成签到 ,获得积分10
3秒前
fxy完成签到 ,获得积分10
4秒前
香锅不要辣完成签到 ,获得积分10
4秒前
Sailzyf完成签到,获得积分10
4秒前
111111完成签到,获得积分0
4秒前
云帆完成签到,获得积分10
5秒前
hh完成签到 ,获得积分10
6秒前
EED完成签到 ,获得积分10
7秒前
7秒前
DiJia完成签到 ,获得积分10
8秒前
JOBZ完成签到,获得积分10
9秒前
10秒前
肚子好e啊完成签到 ,获得积分10
11秒前
斯文麦片完成签到 ,获得积分10
11秒前
壮观的谷冬完成签到 ,获得积分0
11秒前
糊糊发布了新的文献求助30
11秒前
12秒前
Emma完成签到,获得积分10
12秒前
rongrongrong完成签到,获得积分10
12秒前
13秒前
13秒前
miracle完成签到 ,获得积分10
13秒前
优pp完成签到 ,获得积分10
14秒前
LRxxx完成签到 ,获得积分0
15秒前
16秒前
16秒前
甘sir完成签到 ,获得积分10
17秒前
Julie发布了新的文献求助10
19秒前
失眠无声完成签到,获得积分10
20秒前
可靠的一手完成签到 ,获得积分10
20秒前
喵呜发布了新的文献求助30
22秒前
mathmotive完成签到,获得积分10
22秒前
zhongxia完成签到 ,获得积分10
22秒前
23秒前
最棒哒完成签到 ,获得积分10
24秒前
小人物的坚持完成签到 ,获得积分10
25秒前
ZJX完成签到,获得积分10
26秒前
科研通AI6应助晚风采纳,获得10
26秒前
可爱安白完成签到,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252991
求助须知:如何正确求助?哪些是违规求助? 4416534
关于积分的说明 13750009
捐赠科研通 4288755
什么是DOI,文献DOI怎么找? 2353041
邀请新用户注册赠送积分活动 1349815
关于科研通互助平台的介绍 1309493

今日热心研友

沉心静气搞学习
70
差不多先生
2 20
Li
3
豆子
20
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10