Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics‐Clinical Integration Approach

列线图 医学 接收机工作特性 乳腺癌 无线电技术 回顾性队列研究 逻辑回归 肿瘤科 生存分析 Lasso(编程语言) 放射科 内科学 癌症 计算机科学 万维网
作者
Kezhen Li,Juan Ji,Simin Li,Man Yang,Yurou Che,Xu Zhu,Yiyao Zhang,Mei Wang,Zengyi Fang,Liping Luo,Chuan Wu,Xin Lai,Juan Dong,Xinlan Zhang,Na Zhao,Yang Liu,Weidong Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (4): 1206-1217 被引量:15
标识
DOI:10.1002/jmri.28900
摘要

Background Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. Purpose To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. Study Type Retrospective. Population Two hundred forty‐two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC − TLS group (N = 120). Field Strength/Sequence 3.0T; Caipirinha‐Dixon‐TWIST‐volume interpolated breath‐hold sequence for dynamic contrast‐enhanced (DCE) MRI and inversion‐recovery turbo spin echo sequence for T2‐weighted imaging (T2WI). Assessment Three models for differentiating BC + TLS and BC − TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis‐free survival (DMFS), and disease‐free survival (DFS) were compared to evaluate the prognostic value of TLSs. Statistical Tests LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan–Meier method was used to calculate the survival rate. Results The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow‐up time was 52 months. While there was no significant difference in 3‐year OS ( P = 0.22) between BC + TLS and BC − TLS patients, there were significant differences in 3‐year DFS and 3‐year DMFS between the two groups. Data Conclusion The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long‐term disease control rates and better prognoses than those without TLS. Evidence Level 2 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一应助zyy采纳,获得10
1秒前
2秒前
科研通AI6应助liu采纳,获得10
2秒前
糊涂的MJ完成签到,获得积分20
2秒前
幼儿园抢饭第一名完成签到,获得积分20
3秒前
wz发布了新的文献求助10
4秒前
4秒前
后知不觉发布了新的文献求助10
5秒前
5秒前
嘿嘿嘿关注了科研通微信公众号
6秒前
6秒前
科目三应助一切顺利元元采纳,获得10
7秒前
8秒前
liu336371完成签到,获得积分10
8秒前
9秒前
是我呀吼完成签到,获得积分10
9秒前
10秒前
tree驳回了一一应助
10秒前
俊逸若之发布了新的文献求助10
11秒前
务实莫言完成签到,获得积分10
11秒前
小满发布了新的文献求助10
12秒前
行行行完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
golf完成签到,获得积分10
14秒前
腼腆的缘分完成签到,获得积分10
14秒前
小石头完成签到,获得积分10
14秒前
14秒前
万能图书馆应助俊逸若之采纳,获得10
15秒前
15秒前
shishuang发布了新的文献求助10
16秒前
科研通AI6应助大胆的平蓝采纳,获得10
16秒前
小蘑菇应助Magical采纳,获得10
16秒前
GJ发布了新的文献求助10
16秒前
16秒前
科研通AI6应助好名字采纳,获得10
17秒前
科研通AI6应助动听书文采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608315
求助须知:如何正确求助?哪些是违规求助? 4692918
关于积分的说明 14876115
捐赠科研通 4717325
什么是DOI,文献DOI怎么找? 2544189
邀请新用户注册赠送积分活动 1509187
关于科研通互助平台的介绍 1472836