亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Analysis of the Correlation and Prognostic Significance of Tertiary Lymphoid Structures in Breast Cancer: A Radiomics‐Clinical Integration Approach

列线图 医学 接收机工作特性 乳腺癌 无线电技术 回顾性队列研究 逻辑回归 肿瘤科 生存分析 Lasso(编程语言) 放射科 内科学 癌症 计算机科学 万维网
作者
Kezhen Li,Juan Ji,Simin Li,Man Yang,Yurou Che,Xu Zhu,Yiyao Zhang,Mei Wang,Zengyi Fang,Liping Luo,Chuan Wu,Xin Lai,Juan Dong,Xinlan Zhang,Na Zhao,Yang Liu,Weidong Wang
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:59 (4): 1206-1217 被引量:13
标识
DOI:10.1002/jmri.28900
摘要

Background Tertiary lymphoid structures (TLSs) are potential prognostic indicators. Radiomics may help reduce unnecessary invasive operations. Purpose To analyze the association between TLSs and prognosis, and to establish a nomogram model to evaluate the expression of TLSs in breast cancer (BC) patients. Study Type Retrospective. Population Two hundred forty‐two patients with localized primary BC (confirmed by surgery) were divided into BC + TLS group (N = 122) and BC − TLS group (N = 120). Field Strength/Sequence 3.0T; Caipirinha‐Dixon‐TWIST‐volume interpolated breath‐hold sequence for dynamic contrast‐enhanced (DCE) MRI and inversion‐recovery turbo spin echo sequence for T2‐weighted imaging (T2WI). Assessment Three models for differentiating BC + TLS and BC − TLS were developed: 1) a clinical model, 2) a radiomics signature model, and 3) a combined clinical and radiomics (nomogram) model. The overall survival (OS), distant metastasis‐free survival (DMFS), and disease‐free survival (DFS) were compared to evaluate the prognostic value of TLSs. Statistical Tests LASSO algorithm and ANOVA were used to select highly correlated features. Clinical relevant variables were identified by multivariable logistic regression. Model performance was evaluated by the area under the receiver operating characteristic (ROC) curve (AUC), and through decision curve analysis (DCA). The Kaplan–Meier method was used to calculate the survival rate. Results The radiomics signature model (training: AUC 0.766; test: AUC 0.749) and the nomogram model (training: AUC 0.820; test: AUC 0.749) showed better validation performance than the clinical model. DCA showed that the nomogram model had a higher net benefit than the other models. The median follow‐up time was 52 months. While there was no significant difference in 3‐year OS ( P = 0.22) between BC + TLS and BC − TLS patients, there were significant differences in 3‐year DFS and 3‐year DMFS between the two groups. Data Conclusion The nomogram model performs well in distinguishing the presence or absence of TLS. BC + TLS patients had higher long‐term disease control rates and better prognoses than those without TLS. Evidence Level 2 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
恩佐·费尔南德斯完成签到,获得积分10
20秒前
27秒前
Akim应助落后从阳采纳,获得10
42秒前
53秒前
55秒前
56秒前
落后从阳发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助Who采纳,获得10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
1分钟前
2分钟前
坚强的广山完成签到,获得积分0
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
andrele发布了新的文献求助10
2分钟前
3分钟前
白菜菜和向肉肉完成签到,获得积分10
4分钟前
4分钟前
李健应助怡然柚子采纳,获得10
4分钟前
4分钟前
andrele发布了新的文献求助10
4分钟前
5分钟前
YOLO完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
00发布了新的文献求助10
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
东瓜魔法师完成签到,获得积分10
6分钟前
丘比特应助00采纳,获得10
6分钟前
6分钟前
阿浮完成签到 ,获得积分10
6分钟前
淡淡无春发布了新的文献求助30
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307414
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500232
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461