上睑下垂
细胞生物学
炎症体
TRPV4型
化学
线粒体
软骨细胞
软骨
生物
瞬时受体电位通道
受体
生物化学
解剖
作者
Zijian Yan,Zili He,Hongyi Jiang,Yu Zhang,Yitie Xu,Yingze Zhang
标识
DOI:10.1016/j.intimp.2023.110651
摘要
Osteoarthritis (OA) is an age-related chronic degenerative disease with complex pathophysiological mechanisms. Accumulating evidence indicates that nod-like receptor pyrin domain 3 (NLRP3) inflammasome-mediated pyroptosis of chondrocytes plays a crucial role in the OA progression. Transient Receptor Potential Vanilloid 4 (TRPV4), described as a calcium-permeable cation channel, is associated with proinflammatory factors and pyroptosis. In this study, we studied the potential functions of TRPV4 in chondrocyte pyroptosis and cartilage degradation. We found that lipopolysaccharides(LPS)-induced mitochondrial reactive oxygen species (mtROS) accumulation aggravated chondrocyte pyroptosis and cartilage degeneration. TRPV4 induces dynamin-related protein 1 (Drp1) mitochondrial translocation through the Ca2+-calmodulin-dependent protein kinase II (CaMKII) signaling pathway, which subsequently caused the mitochondrial dysfunction (e.g., mPTP over opening; Δψm depolarization; ATP production decreased; mtROS accumulation), pyroptosis and extracellular matrix (ECM) degradation through hexokinase 2 (HK2) dissociation from mitochondrial membrane. Moreover, TRPV4 inhibition reversed Drp1-involved chondrocyte pyroptosis and cartilage degeneration in the anterior cruciate ligament transection (ACLT) mouse model. Our findings revealed the internal mechanisms underlying TRPV4 regulation in chondrocytes and its intrinsic therapeutic efficacy for OA.
科研通智能强力驱动
Strongly Powered by AbleSci AI