清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MOOC performance prediction and analysis via Bayesian network and Maslow’s hierarchical needs theory

计算机科学 干预(咨询) 心理干预 贝叶斯网络 构造(python库) 知识管理 数据科学 人工智能 心理学 精神科 程序设计语言
作者
Luyu Zhu,Jia Hao,Jianhou Gan
出处
期刊:Interactive Learning Environments [Informa]
卷期号:: 1-17 被引量:2
标识
DOI:10.1080/10494820.2023.2246517
摘要

ABSTRACTNowadays, Massive Open Online Courses (MOOC) has been gradually accepted by the public as a new type of education and teaching method. However, due to the lack of timely intervention and guidance from educators, learners' performance is not as effective as it could be. To address this problem, predicting MOOC learners' performance and providing them with timely interventions have become an indispensable part for the MOOC learning. However, current MOOC performance prediction methods cannot provide us with interpretable prediction results and cannot further help us to provide learners with targeted intervention strategies. To this end, we adopt the framework of Bayesian Network (BN) and then constructed an MOOC Performance Prediction BN (MPBN), which provides us with a graphical explanation of how learners' demographical and learning behavior characteristics affect their performance. Besides, since the productive MOOC learners tend to be driven by their inner goals, we further use Maslow's hierarchical needs theory to construct several indicators, by which to analyze the prediction of MPBN and then propose the appropriate intervention strategies.KEYWORDS: MOOCperformance predictionBayesian networkMaslow's hierarchical needs theoryintervention strategies Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe datasets generated during the current study are available in the online repository the website: https://analyse.kmi.open.ac.uk/open_dataset.Notes1 https://analyse.kmi.open.ac.uk/open_dataset.Additional informationFundingThis work was supported by National Natural Science Foundation of China [grant number 61862068]; Youth Project of Applied Basic Research Program of Yunnan Province [grant number 202201AU070050]; Key Project of Applied Basic Research Program of Yunnan Province [grant number 202201AS070021].Notes on contributorsLuyu ZhuLuyu Zhu received the B.S. degree in educational technology in Qufu Normal University. She is currently a Master degree candidate in the School of Information at Yunnan Normal University. Her research interests include massive data analysis and students' achievement prediction and analysis.Jia HaoJia Hao received the MS.D. and Ph.D. in computer science from Wuhan University of Technology and Yunnan University in 2015 and 2020 respectively. She is currently a lecturer and a postdoctoral research fellow in the Minister of Education at Yunnan Normal University, Kunming, China. Her research interests include massive data analysis, uncertainty in artificial intelligence, educational technology.Jianhou GanJianhou Gan received the Ph.D. in computer science from Kunming University of Technology in 2016. He is currently a professor and Ph.D. supervisor at Yunnan Normal University, Kunming, China. His research interests include massive data analysis, database, educational informatization and intelligent education. He has published more than 80 papers in the journals as Applied Soft Computing, Neurocomputing and conferences as DASFAA, CIKM, etc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suiwuya完成签到,获得积分10
5秒前
午后狂睡完成签到 ,获得积分10
11秒前
Shicheng完成签到,获得积分10
18秒前
Lucas应助文艺猫咪采纳,获得10
1分钟前
星辰大海应助xun采纳,获得10
1分钟前
krajicek完成签到,获得积分10
1分钟前
1分钟前
1分钟前
许子发布了新的文献求助10
1分钟前
文艺猫咪发布了新的文献求助10
1分钟前
jessicaw完成签到,获得积分10
1分钟前
1分钟前
Ji完成签到,获得积分10
1分钟前
白华苍松发布了新的文献求助10
1分钟前
gwbk完成签到,获得积分10
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
许子完成签到,获得积分10
2分钟前
今后应助Anto采纳,获得10
2分钟前
2分钟前
xun发布了新的文献求助10
3分钟前
缥缈雍发布了新的文献求助20
3分钟前
清净163完成签到,获得积分10
3分钟前
3分钟前
3分钟前
陈纸溪发布了新的文献求助10
3分钟前
3分钟前
4分钟前
4分钟前
领导范儿应助残月初升采纳,获得10
4分钟前
晴天娃娃完成签到 ,获得积分10
4分钟前
4分钟前
残月初升发布了新的文献求助10
4分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
wanci应助陈纸溪采纳,获得10
5分钟前
5分钟前
5分钟前
白华苍松发布了新的文献求助10
5分钟前
陈纸溪发布了新的文献求助10
5分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131390
关于积分的说明 9391041
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715853